spaCy/spacy/tests/doc/test_span_merge.py

197 lines
7.1 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
from spacy.vocab import Vocab
from spacy.tokens import Doc
import pytest
from ..util import get_doc
def test_spans_merge_tokens(en_tokenizer):
text = "Los Angeles start."
heads = [1, 1, 0, -1]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
assert len(doc) == 4
assert doc[0].head.text == "Angeles"
assert doc[1].head.text == "start"
doc.merge(0, len("Los Angeles"), tag="NNP", lemma="Los Angeles", ent_type="GPE")
assert len(doc) == 3
assert doc[0].text == "Los Angeles"
assert doc[0].head.text == "start"
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
assert len(doc) == 4
assert doc[0].head.text == "Angeles"
assert doc[1].head.text == "start"
doc.merge(0, len("Los Angeles"), tag="NNP", lemma="Los Angeles", label="GPE")
assert len(doc) == 3
assert doc[0].text == "Los Angeles"
assert doc[0].head.text == "start"
assert doc[0].ent_type_ == "GPE"
def test_spans_merge_heads(en_tokenizer):
text = "I found a pilates class near work."
heads = [1, 0, 2, 1, -3, -1, -1, -6]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
assert len(doc) == 8
with doc.retokenize() as retokenizer:
attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"}
retokenizer.merge(doc[3:5], attrs=attrs)
assert len(doc) == 7
assert doc[0].head.i == 1
assert doc[1].head.i == 1
assert doc[2].head.i == 3
assert doc[3].head.i == 1
assert doc[4].head.i in [1, 3]
assert doc[5].head.i == 4
def test_spans_merge_non_disjoint(en_tokenizer):
text = "Los Angeles start."
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens])
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.merge(
doc[0:2],
attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
)
retokenizer.merge(
doc[0:1],
attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
)
def test_span_np_merges(en_tokenizer):
text = "displaCy is a parse tool built with Javascript"
heads = [1, 0, 2, 1, -3, -1, -1, -1]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
assert doc[4].head.i == 1
doc.merge(
doc[2].idx, doc[4].idx + len(doc[4]), tag="NP", lemma="tool", ent_type="O"
)
assert doc[2].head.i == 1
text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript."
heads = [1, 0, 8, 3, -1, -2, 4, 3, 1, 1, -9, -1, -1, -1, -1, -2, -15]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
ents = [(e[0].idx, e[-1].idx + len(e[-1]), e.label_, e.lemma_) for e in doc.ents]
for start, end, label, lemma in ents:
merged = doc.merge(start, end, tag=label, lemma=lemma, ent_type=label)
assert merged is not None, (start, end, label, lemma)
text = "One test with entities like New York City so the ents list is not void"
heads = [1, 11, -1, -1, -1, 1, 1, -3, 4, 2, 1, 1, 0, -1, -2]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
for span in doc.ents:
merged = doc.merge()
assert merged is not None, (span.start, span.end, span.label_, span.lemma_)
def test_spans_entity_merge(en_tokenizer):
# fmt: off
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n"
heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1]
tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"]
ents = [(0, 2, "PERSON"), (10, 11, "GPE"), (13, 15, "PERSON")]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(
tokens.vocab, words=[t.text for t in tokens], heads=heads, tags=tags, ents=ents
)
assert len(doc) == 17
for ent in doc.ents:
label, lemma, type_ = (
ent.root.tag_,
ent.root.lemma_,
max(w.ent_type_ for w in ent),
)
ent.merge(label=label, lemma=lemma, ent_type=type_)
# check looping is ok
assert len(doc) == 15
def test_spans_entity_merge_iob():
# Test entity IOB stays consistent after merging
words = ["a", "b", "c", "d", "e"]
doc = Doc(Vocab(), words=words)
doc.ents = [
(doc.vocab.strings.add("ent-abc"), 0, 3),
(doc.vocab.strings.add("ent-d"), 3, 4),
]
assert doc[0].ent_iob_ == "B"
assert doc[1].ent_iob_ == "I"
assert doc[2].ent_iob_ == "I"
assert doc[3].ent_iob_ == "B"
doc[0:1].merge()
assert doc[0].ent_iob_ == "B"
assert doc[1].ent_iob_ == "I"
words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
doc = Doc(Vocab(), words=words)
doc.ents = [
(doc.vocab.strings.add("ent-de"), 3, 5),
(doc.vocab.strings.add("ent-fg"), 5, 7),
]
assert doc[3].ent_iob_ == "B"
assert doc[4].ent_iob_ == "I"
assert doc[5].ent_iob_ == "B"
assert doc[6].ent_iob_ == "I"
with doc.retokenize() as retokenizer:
retokenizer.merge(doc[2:4])
retokenizer.merge(doc[4:6])
retokenizer.merge(doc[7:9])
for token in doc:
print(token)
print(token.ent_iob)
assert len(doc) == 6
assert doc[3].ent_iob_ == "B"
assert doc[4].ent_iob_ == "I"
def test_spans_sentence_update_after_merge(en_tokenizer):
# fmt: off
text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale."
heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7]
deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
'compound', 'dobj', 'punct']
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
sent1, sent2 = list(doc.sents)
init_len = len(sent1)
init_len2 = len(sent2)
doc[0:2].merge(label="none", lemma="none", ent_type="none")
doc[-2:].merge(label="none", lemma="none", ent_type="none")
assert len(sent1) == init_len - 1
assert len(sent2) == init_len2 - 1
def test_spans_subtree_size_check(en_tokenizer):
# fmt: off
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale"
heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2]
deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr",
"nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound",
"dobj"]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
sent1 = list(doc.sents)[0]
init_len = len(list(sent1.root.subtree))
doc[0:2].merge(label="none", lemma="none", ent_type="none")
assert len(list(sent1.root.subtree)) == init_len - 1