# coding: utf-8 from __future__ import unicode_literals from spacy.vocab import Vocab from spacy.tokens import Doc import pytest from ..util import get_doc def test_spans_merge_tokens(en_tokenizer): text = "Los Angeles start." heads = [1, 1, 0, -1] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert len(doc) == 4 assert doc[0].head.text == "Angeles" assert doc[1].head.text == "start" doc.merge(0, len("Los Angeles"), tag="NNP", lemma="Los Angeles", ent_type="GPE") assert len(doc) == 3 assert doc[0].text == "Los Angeles" assert doc[0].head.text == "start" doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert len(doc) == 4 assert doc[0].head.text == "Angeles" assert doc[1].head.text == "start" doc.merge(0, len("Los Angeles"), tag="NNP", lemma="Los Angeles", label="GPE") assert len(doc) == 3 assert doc[0].text == "Los Angeles" assert doc[0].head.text == "start" assert doc[0].ent_type_ == "GPE" def test_spans_merge_heads(en_tokenizer): text = "I found a pilates class near work." heads = [1, 0, 2, 1, -3, -1, -1, -6] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert len(doc) == 8 with doc.retokenize() as retokenizer: attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"} retokenizer.merge(doc[3:5], attrs=attrs) assert len(doc) == 7 assert doc[0].head.i == 1 assert doc[1].head.i == 1 assert doc[2].head.i == 3 assert doc[3].head.i == 1 assert doc[4].head.i in [1, 3] assert doc[5].head.i == 4 def test_spans_merge_non_disjoint(en_tokenizer): text = "Los Angeles start." tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, [t.text for t in tokens]) with pytest.raises(ValueError): with doc.retokenize() as retokenizer: retokenizer.merge( doc[0:2], attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"}, ) retokenizer.merge( doc[0:1], attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"}, ) def test_span_np_merges(en_tokenizer): text = "displaCy is a parse tool built with Javascript" heads = [1, 0, 2, 1, -3, -1, -1, -1] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) assert doc[4].head.i == 1 doc.merge( doc[2].idx, doc[4].idx + len(doc[4]), tag="NP", lemma="tool", ent_type="O" ) assert doc[2].head.i == 1 text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript." heads = [1, 0, 8, 3, -1, -2, 4, 3, 1, 1, -9, -1, -1, -1, -1, -2, -15] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) ents = [(e[0].idx, e[-1].idx + len(e[-1]), e.label_, e.lemma_) for e in doc.ents] for start, end, label, lemma in ents: merged = doc.merge(start, end, tag=label, lemma=lemma, ent_type=label) assert merged is not None, (start, end, label, lemma) text = "One test with entities like New York City so the ents list is not void" heads = [1, 11, -1, -1, -1, 1, 1, -3, 4, 2, 1, 1, 0, -1, -2] tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads) for span in doc.ents: merged = doc.merge() assert merged is not None, (span.start, span.end, span.label_, span.lemma_) def test_spans_entity_merge(en_tokenizer): # fmt: off text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n" heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1] tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"] ents = [(0, 2, "PERSON"), (10, 11, "GPE"), (13, 15, "PERSON")] # fmt: on tokens = en_tokenizer(text) doc = get_doc( tokens.vocab, words=[t.text for t in tokens], heads=heads, tags=tags, ents=ents ) assert len(doc) == 17 for ent in doc.ents: label, lemma, type_ = ( ent.root.tag_, ent.root.lemma_, max(w.ent_type_ for w in ent), ) ent.merge(label=label, lemma=lemma, ent_type=type_) # check looping is ok assert len(doc) == 15 def test_spans_entity_merge_iob(): # Test entity IOB stays consistent after merging words = ["a", "b", "c", "d", "e"] doc = Doc(Vocab(), words=words) doc.ents = [ (doc.vocab.strings.add("ent-abc"), 0, 3), (doc.vocab.strings.add("ent-d"), 3, 4), ] assert doc[0].ent_iob_ == "B" assert doc[1].ent_iob_ == "I" assert doc[2].ent_iob_ == "I" assert doc[3].ent_iob_ == "B" doc[0:1].merge() assert doc[0].ent_iob_ == "B" assert doc[1].ent_iob_ == "I" words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"] doc = Doc(Vocab(), words=words) doc.ents = [ (doc.vocab.strings.add("ent-de"), 3, 5), (doc.vocab.strings.add("ent-fg"), 5, 7), ] assert doc[3].ent_iob_ == "B" assert doc[4].ent_iob_ == "I" assert doc[5].ent_iob_ == "B" assert doc[6].ent_iob_ == "I" with doc.retokenize() as retokenizer: retokenizer.merge(doc[2:4]) retokenizer.merge(doc[4:6]) retokenizer.merge(doc[7:9]) for token in doc: print(token) print(token.ent_iob) assert len(doc) == 6 assert doc[3].ent_iob_ == "B" assert doc[4].ent_iob_ == "I" def test_spans_sentence_update_after_merge(en_tokenizer): # fmt: off text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale." heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7] deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr', 'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj', 'compound', 'dobj', 'punct'] # fmt: on tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) sent1, sent2 = list(doc.sents) init_len = len(sent1) init_len2 = len(sent2) doc[0:2].merge(label="none", lemma="none", ent_type="none") doc[-2:].merge(label="none", lemma="none", ent_type="none") assert len(sent1) == init_len - 1 assert len(sent2) == init_len2 - 1 def test_spans_subtree_size_check(en_tokenizer): # fmt: off text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale" heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2] deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr", "nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound", "dobj"] # fmt: on tokens = en_tokenizer(text) doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) sent1 = list(doc.sents)[0] init_len = len(list(sent1.root.subtree)) doc[0:2].merge(label="none", lemma="none", ent_type="none") assert len(list(sent1.root.subtree)) == init_len - 1