spaCy/website/api/_top-level/_util.jade

455 lines
13 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//- 💫 DOCS > API > TOP-LEVEL > UTIL
p
| spaCy comes with a small collection of utility functions located in
| #[+src(gh("spaCy", "spacy/util.py")) #[code spacy/util.py]].
| Because utility functions are mostly intended for
| #[strong internal use within spaCy], their behaviour may change with
| future releases. The functions documented on this page should be safe
| to use and we'll try to ensure backwards compatibility. However, we
| recommend having additional tests in place if your application depends on
| any of spaCy's utilities.
+h(3, "util.get_data_path") util.get_data_path
+tag function
p
| Get path to the data directory where spaCy looks for models. Defaults to
| #[code spacy/data].
+table(["Name", "Type", "Description"])
+row
+cell #[code require_exists]
+cell bool
+cell Only return path if it exists, otherwise return #[code None].
+row("foot")
+cell returns
+cell #[code Path] / #[code None]
+cell Data path or #[code None].
+h(3, "util.set_data_path") util.set_data_path
+tag function
p
| Set custom path to the data directory where spaCy looks for models.
+aside-code("Example").
util.set_data_path('/custom/path')
util.get_data_path()
# PosixPath('/custom/path')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode or #[code Path]
+cell Path to new data directory.
+h(3, "util.get_lang_class") util.get_lang_class
+tag function
p
| Import and load a #[code Language] class. Allows lazy-loading
| #[+a("/usage/adding-languages") language data] and importing
| languages using the two-letter language code. To add a language code
| for a custom language class, you can use the
| #[+api("top-level#util.set_lang_class") #[code set_lang_class]] helper.
+aside-code("Example").
for lang_id in ['en', 'de']:
lang_class = util.get_lang_class(lang_id)
lang = lang_class()
tokenizer = lang.Defaults.create_tokenizer()
+table(["Name", "Type", "Description"])
+row
+cell #[code lang]
+cell unicode
+cell Two-letter language code, e.g. #[code 'en'].
+row("foot")
+cell returns
+cell #[code Language]
+cell Language class.
+h(3, "util.set_lang_class") util.set_lang_class
+tag function
p
| Set a custom #[code Language] class name that can be loaded via
| #[+api("top-level#util.get_lang_class") #[code get_lang_class]]. If
| your model uses a custom language, this is required so that spaCy can
| load the correct class from the two-letter language code.
+aside-code("Example").
from spacy.lang.xy import CustomLanguage
util.set_lang_class('xy', CustomLanguage)
lang_class = util.get_lang_class('xy')
nlp = lang_class()
+table(["Name", "Type", "Description"])
+row
+cell #[code name]
+cell unicode
+cell Two-letter language code, e.g. #[code 'en'].
+row
+cell #[code cls]
+cell #[code Language]
+cell The language class, e.g. #[code English].
+h(3, "util.load_model") util.load_model
+tag function
+tag-new(2)
p
| Load a model from a shortcut link, package or data path. If called with a
| shortcut link or package name, spaCy will assume the model is a Python
| package and import and call its #[code load()] method. If called with a
| path, spaCy will assume it's a data directory, read the language and
| pipeline settings from the meta.json and initialise a #[code Language]
| class. The model data will then be loaded in via
| #[+api("language#from_disk") #[code Language.from_disk()]].
+aside-code("Example").
nlp = util.load_model('en')
nlp = util.load_model('en_core_web_sm', disable=['ner'])
nlp = util.load_model('/path/to/data')
+table(["Name", "Type", "Description"])
+row
+cell #[code name]
+cell unicode
+cell Package name, shortcut link or model path.
+row
+cell #[code **overrides]
+cell -
+cell Specific overrides, like pipeline components to disable.
+row("foot")
+cell returns
+cell #[code Language]
+cell #[code Language] class with the loaded model.
+h(3, "util.load_model_from_path") util.load_model_from_path
+tag function
+tag-new(2)
p
| Load a model from a data directory path. Creates the
| #[+api("language") #[code Language]] class and pipeline based on the
| directory's meta.json and then calls
| #[+api("language#from_disk") #[code from_disk()]] with the path. This
| function also makes it easy to test a new model that you haven't packaged
| yet.
+aside-code("Example").
nlp = load_model_from_path('/path/to/data')
+table(["Name", "Type", "Description"])
+row
+cell #[code model_path]
+cell unicode
+cell Path to model data directory.
+row
+cell #[code meta]
+cell dict
+cell
| Model meta data. If #[code False], spaCy will try to load the
| meta from a meta.json in the same directory.
+row
+cell #[code **overrides]
+cell -
+cell Specific overrides, like pipeline components to disable.
+row("foot")
+cell returns
+cell #[code Language]
+cell #[code Language] class with the loaded model.
+h(3, "util.load_model_from_init_py") util.load_model_from_init_py
+tag function
+tag-new(2)
p
| A helper function to use in the #[code load()] method of a model package's
| #[+src(gh("spacy-models", "template/model/xx_model_name/__init__.py")) #[code __init__.py]].
+aside-code("Example").
from spacy.util import load_model_from_init_py
def load(**overrides):
return load_model_from_init_py(__file__, **overrides)
+table(["Name", "Type", "Description"])
+row
+cell #[code init_file]
+cell unicode
+cell Path to model's __init__.py, i.e. #[code __file__].
+row
+cell #[code **overrides]
+cell -
+cell Specific overrides, like pipeline components to disable.
+row("foot")
+cell returns
+cell #[code Language]
+cell #[code Language] class with the loaded model.
+h(3, "util.get_model_meta") util.get_model_meta
+tag function
+tag-new(2)
p
| Get a model's meta.json from a directory path and validate its contents.
+aside-code("Example").
meta = util.get_model_meta('/path/to/model')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode or #[code Path]
+cell Path to model directory.
+row("foot")
+cell returns
+cell dict
+cell The model's meta data.
+h(3, "util.is_package") util.is_package
+tag function
p
| Check if string maps to a package installed via pip. Mainly used to
| validate #[+a("/usage/models") model packages].
+aside-code("Example").
util.is_package('en_core_web_sm') # True
util.is_package('xyz') # False
+table(["Name", "Type", "Description"])
+row
+cell #[code name]
+cell unicode
+cell Name of package.
+row("foot")
+cell returns
+cell #[code bool]
+cell #[code True] if installed package, #[code False] if not.
+h(3, "util.get_package_path") util.get_package_path
+tag function
+tag-new(2)
p
| Get path to an installed package. Mainly used to resolve the location of
| #[+a("/usage/models") model packages]. Currently imports the package
| to find its path.
+aside-code("Example").
util.get_package_path('en_core_web_sm')
# /usr/lib/python3.6/site-packages/en_core_web_sm
+table(["Name", "Type", "Description"])
+row
+cell #[code package_name]
+cell unicode
+cell Name of installed package.
+row("foot")
+cell returns
+cell #[code Path]
+cell Path to model package directory.
+h(3, "util.is_in_jupyter") util.is_in_jupyter
+tag function
+tag-new(2)
p
| Check if user is running spaCy from a #[+a("https://jupyter.org") Jupyter]
| notebook by detecting the IPython kernel. Mainly used for the
| #[+api("top-level#displacy") #[code displacy]] visualizer.
+aside-code("Example").
html = '<h1>Hello world!</h1>'
if util.is_in_jupyter():
from IPython.core.display import display, HTML
display(HTML(html))
+table(["Name", "Type", "Description"])
+row("foot")
+cell returns
+cell bool
+cell #[code True] if in Jupyter, #[code False] if not.
+h(3, "util.update_exc") util.update_exc
+tag function
p
| Update, validate and overwrite
| #[+a("/usage/adding-languages#tokenizer-exceptions") tokenizer exceptions].
| Used to combine global exceptions with custom, language-specific
| exceptions. Will raise an error if key doesn't match #[code ORTH] values.
+aside-code("Example").
BASE = {"a.": [{ORTH: "a."}], ":)": [{ORTH: ":)"}]}
NEW = {"a.": [{ORTH: "a.", LEMMA: "all"}]}
exceptions = util.update_exc(BASE, NEW)
# {"a.": [{ORTH: "a.", LEMMA: "all"}], ":)": [{ORTH: ":)"}]}
+table(["Name", "Type", "Description"])
+row
+cell #[code base_exceptions]
+cell dict
+cell Base tokenizer exceptions.
+row
+cell #[code *addition_dicts]
+cell dicts
+cell Exception dictionaries to add to the base exceptions, in order.
+row("foot")
+cell returns
+cell dict
+cell Combined tokenizer exceptions.
+h(3, "util.minibatch") util.minibatch
+tag function
+tag-new(2)
p
| Iterate over batches of items. #[code size] may be an iterator, so that
| batch-size can vary on each step.
+aside-code("Example").
batches = minibatch(train_data)
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations)
+table(["Name", "Type", "Description"])
+row
+cell #[code items]
+cell iterable
+cell The items to batch up.
+row
+cell #[code size]
+cell int / iterable
+cell
| The batch size(s). Use
| #[+api("top-level#util.compounding") #[code util.compounding]] or
| #[+api("top-level#util.decaying") #[code util.decaying]] or
| for an infinite series of compounding or decaying values.
+row("foot")
+cell yields
+cell list
+cell The batches.
+h(3, "util.compounding") util.compounding
+tag function
+tag-new(2)
p
| Yield an infinite series of compounding values. Each time the generator
| is called, a value is produced by multiplying the previous value by the
| compound rate.
+aside-code("Example").
sizes = compounding(1., 10., 1.5)
assert next(sizes) == 1.
assert next(sizes) == 1. * 1.5
assert next(sizes) == 1.5 * 1.5
+table(["Name", "Type", "Description"])
+row
+cell #[code start]
+cell int / float
+cell The first value.
+row
+cell #[code stop]
+cell int / float
+cell The maximum value.
+row
+cell #[code compound]
+cell int / float
+cell The compounding factor.
+row("foot")
+cell yields
+cell int
+cell Compounding values.
+h(3, "util.decaying") util.decaying
+tag function
+tag-new(2)
p
| Yield an infinite series of linearly decaying values.
+aside-code("Example").
sizes = decaying(1., 10., 0.001)
assert next(sizes) == 1.
assert next(sizes) == 1. - 0.001
assert next(sizes) == 0.999 - 0.001
+table(["Name", "Type", "Description"])
+row
+cell #[code start]
+cell int / float
+cell The first value.
+row
+cell #[code end]
+cell int / float
+cell The maximum value.
+row
+cell #[code decay]
+cell int / float
+cell The decaying factor.
+row("foot")
+cell yields
+cell int
+cell The decaying values.
+h(3, "util.itershuffle") util.itershuffle
+tag function
+tag-new(2)
p
| Shuffle an iterator. This works by holding #[code bufsize] items back and
| yielding them sometime later. Obviously, this is not unbiased but
| should be good enough for batching. Larger bufsize means less bias.
+aside-code("Example").
values = range(1000)
shuffled = itershuffle(values)
+table(["Name", "Type", "Description"])
+row
+cell #[code iterable]
+cell iterable
+cell Iterator to shuffle.
+row
+cell #[code buffsize]
+cell int
+cell Items to hold back.
+row("foot")
+cell yields
+cell iterable
+cell The shuffled iterator.