spaCy/website/api/_top-level/_util.jade

455 lines
13 KiB
Plaintext
Raw Normal View History

2017-10-03 12:27:22 +00:00
//- 💫 DOCS > API > TOP-LEVEL > UTIL
2017-05-13 19:23:12 +00:00
p
| spaCy comes with a small collection of utility functions located in
2017-10-03 12:27:22 +00:00
| #[+src(gh("spaCy", "spacy/util.py")) #[code spacy/util.py]].
2017-05-13 19:23:12 +00:00
| Because utility functions are mostly intended for
| #[strong internal use within spaCy], their behaviour may change with
| future releases. The functions documented on this page should be safe
| to use and we'll try to ensure backwards compatibility. However, we
| recommend having additional tests in place if your application depends on
| any of spaCy's utilities.
2017-10-03 12:27:22 +00:00
+h(3, "util.get_data_path") util.get_data_path
2017-05-13 19:23:12 +00:00
+tag function
p
| Get path to the data directory where spaCy looks for models. Defaults to
| #[code spacy/data].
+table(["Name", "Type", "Description"])
+row
+cell #[code require_exists]
+cell bool
+cell Only return path if it exists, otherwise return #[code None].
2017-10-03 12:27:22 +00:00
+row("foot")
+cell returns
2017-05-13 19:23:12 +00:00
+cell #[code Path] / #[code None]
+cell Data path or #[code None].
2017-10-03 12:27:22 +00:00
+h(3, "util.set_data_path") util.set_data_path
2017-05-13 19:23:12 +00:00
+tag function
p
| Set custom path to the data directory where spaCy looks for models.
+aside-code("Example").
util.set_data_path('/custom/path')
util.get_data_path()
# PosixPath('/custom/path')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode or #[code Path]
+cell Path to new data directory.
2017-10-03 12:27:22 +00:00
+h(3, "util.get_lang_class") util.get_lang_class
2017-05-13 19:23:12 +00:00
+tag function
p
| Import and load a #[code Language] class. Allows lazy-loading
2017-10-03 12:27:22 +00:00
| #[+a("/usage/adding-languages") language data] and importing
| languages using the two-letter language code. To add a language code
| for a custom language class, you can use the
| #[+api("top-level#util.set_lang_class") #[code set_lang_class]] helper.
2017-05-13 19:23:12 +00:00
+aside-code("Example").
for lang_id in ['en', 'de']:
lang_class = util.get_lang_class(lang_id)
2017-05-13 19:23:12 +00:00
lang = lang_class()
tokenizer = lang.Defaults.create_tokenizer()
+table(["Name", "Type", "Description"])
+row
+cell #[code lang]
+cell unicode
+cell Two-letter language code, e.g. #[code 'en'].
2017-10-03 12:27:22 +00:00
+row("foot")
+cell returns
2017-05-13 19:23:12 +00:00
+cell #[code Language]
+cell Language class.
+h(3, "util.set_lang_class") util.set_lang_class
+tag function
p
| Set a custom #[code Language] class name that can be loaded via
| #[+api("top-level#util.get_lang_class") #[code get_lang_class]]. If
| your model uses a custom language, this is required so that spaCy can
| load the correct class from the two-letter language code.
+aside-code("Example").
from spacy.lang.xy import CustomLanguage
util.set_lang_class('xy', CustomLanguage)
lang_class = util.get_lang_class('xy')
nlp = lang_class()
+table(["Name", "Type", "Description"])
+row
+cell #[code name]
+cell unicode
+cell Two-letter language code, e.g. #[code 'en'].
+row
+cell #[code cls]
+cell #[code Language]
+cell The language class, e.g. #[code English].
2017-10-03 12:27:22 +00:00
+h(3, "util.load_model") util.load_model
2017-05-13 19:23:12 +00:00
+tag function
+tag-new(2)
2017-05-13 19:23:12 +00:00
p
| Load a model from a shortcut link, package or data path. If called with a
| shortcut link or package name, spaCy will assume the model is a Python
| package and import and call its #[code load()] method. If called with a
| path, spaCy will assume it's a data directory, read the language and
| pipeline settings from the meta.json and initialise a #[code Language]
| class. The model data will then be loaded in via
| #[+api("language#from_disk") #[code Language.from_disk()]].
2017-05-13 19:23:12 +00:00
+aside-code("Example").
nlp = util.load_model('en')
nlp = util.load_model('en_core_web_sm', disable=['ner'])
nlp = util.load_model('/path/to/data')
2017-05-13 19:23:12 +00:00
+table(["Name", "Type", "Description"])
+row
+cell #[code name]
+cell unicode
+cell Package name, shortcut link or model path.
+row
+cell #[code **overrides]
+cell -
+cell Specific overrides, like pipeline components to disable.
2017-10-03 12:27:22 +00:00
+row("foot")
+cell returns
+cell #[code Language]
+cell #[code Language] class with the loaded model.
2017-06-05 11:18:22 +00:00
2017-10-03 12:27:22 +00:00
+h(3, "util.load_model_from_path") util.load_model_from_path
2017-06-05 11:18:22 +00:00
+tag function
+tag-new(2)
p
| Load a model from a data directory path. Creates the
| #[+api("language") #[code Language]] class and pipeline based on the
| directory's meta.json and then calls
| #[+api("language#from_disk") #[code from_disk()]] with the path. This
| function also makes it easy to test a new model that you haven't packaged
| yet.
+aside-code("Example").
nlp = load_model_from_path('/path/to/data')
+table(["Name", "Type", "Description"])
+row
+cell #[code model_path]
+cell unicode
+cell Path to model data directory.
+row
+cell #[code meta]
+cell dict
+cell
| Model meta data. If #[code False], spaCy will try to load the
| meta from a meta.json in the same directory.
+row
+cell #[code **overrides]
+cell -
+cell Specific overrides, like pipeline components to disable.
2017-10-03 12:27:22 +00:00
+row("foot")
2017-06-05 11:18:22 +00:00
+cell returns
+cell #[code Language]
+cell #[code Language] class with the loaded model.
2017-10-03 12:27:22 +00:00
+h(3, "util.load_model_from_init_py") util.load_model_from_init_py
+tag function
+tag-new(2)
p
| A helper function to use in the #[code load()] method of a model package's
| #[+src(gh("spacy-models", "template/model/xx_model_name/__init__.py")) #[code __init__.py]].
+aside-code("Example").
from spacy.util import load_model_from_init_py
def load(**overrides):
return load_model_from_init_py(__file__, **overrides)
+table(["Name", "Type", "Description"])
+row
+cell #[code init_file]
+cell unicode
+cell Path to model's __init__.py, i.e. #[code __file__].
+row
+cell #[code **overrides]
+cell -
+cell Specific overrides, like pipeline components to disable.
2017-10-03 12:27:22 +00:00
+row("foot")
+cell returns
+cell #[code Language]
+cell #[code Language] class with the loaded model.
2017-05-13 19:23:12 +00:00
2017-10-03 12:27:22 +00:00
+h(3, "util.get_model_meta") util.get_model_meta
+tag function
+tag-new(2)
p
| Get a model's meta.json from a directory path and validate its contents.
+aside-code("Example").
meta = util.get_model_meta('/path/to/model')
+table(["Name", "Type", "Description"])
+row
+cell #[code path]
+cell unicode or #[code Path]
+cell Path to model directory.
2017-10-03 12:27:22 +00:00
+row("foot")
+cell returns
+cell dict
+cell The model's meta data.
2017-10-03 12:27:22 +00:00
+h(3, "util.is_package") util.is_package
2017-05-13 19:23:12 +00:00
+tag function
p
| Check if string maps to a package installed via pip. Mainly used to
2017-10-03 12:27:22 +00:00
| validate #[+a("/usage/models") model packages].
2017-05-13 19:23:12 +00:00
+aside-code("Example").
util.is_package('en_core_web_sm') # True
util.is_package('xyz') # False
+table(["Name", "Type", "Description"])
+row
+cell #[code name]
+cell unicode
+cell Name of package.
2017-10-03 12:27:22 +00:00
+row("foot")
+cell returns
2017-05-13 19:23:12 +00:00
+cell #[code bool]
+cell #[code True] if installed package, #[code False] if not.
2017-10-03 12:27:22 +00:00
+h(3, "util.get_package_path") util.get_package_path
2017-05-13 19:23:12 +00:00
+tag function
+tag-new(2)
2017-05-13 19:23:12 +00:00
p
| Get path to an installed package. Mainly used to resolve the location of
2017-10-03 12:27:22 +00:00
| #[+a("/usage/models") model packages]. Currently imports the package
| to find its path.
2017-05-13 19:23:12 +00:00
+aside-code("Example").
util.get_package_path('en_core_web_sm')
# /usr/lib/python3.6/site-packages/en_core_web_sm
2017-05-13 19:23:12 +00:00
+table(["Name", "Type", "Description"])
+row
+cell #[code package_name]
+cell unicode
+cell Name of installed package.
2017-10-03 12:27:22 +00:00
+row("foot")
+cell returns
2017-05-13 19:23:12 +00:00
+cell #[code Path]
+cell Path to model package directory.
2017-10-03 12:27:22 +00:00
+h(3, "util.is_in_jupyter") util.is_in_jupyter
2017-05-20 23:12:09 +00:00
+tag function
+tag-new(2)
2017-05-20 23:12:09 +00:00
p
| Check if user is running spaCy from a #[+a("https://jupyter.org") Jupyter]
| notebook by detecting the IPython kernel. Mainly used for the
| #[+api("top-level#displacy") #[code displacy]] visualizer.
2017-05-20 23:12:09 +00:00
+aside-code("Example").
html = '<h1>Hello world!</h1>'
if util.is_in_jupyter():
from IPython.core.display import display, HTML
2018-06-10 22:21:06 +00:00
display(HTML(html))
2017-05-20 23:12:09 +00:00
+table(["Name", "Type", "Description"])
2017-10-03 12:27:22 +00:00
+row("foot")
2017-05-20 23:12:09 +00:00
+cell returns
+cell bool
+cell #[code True] if in Jupyter, #[code False] if not.
2017-10-03 12:27:22 +00:00
+h(3, "util.update_exc") util.update_exc
2017-05-13 19:23:12 +00:00
+tag function
p
| Update, validate and overwrite
2017-10-03 12:27:22 +00:00
| #[+a("/usage/adding-languages#tokenizer-exceptions") tokenizer exceptions].
2017-05-13 19:23:12 +00:00
| Used to combine global exceptions with custom, language-specific
| exceptions. Will raise an error if key doesn't match #[code ORTH] values.
+aside-code("Example").
BASE = {"a.": [{ORTH: "a."}], ":)": [{ORTH: ":)"}]}
NEW = {"a.": [{ORTH: "a.", LEMMA: "all"}]}
exceptions = util.update_exc(BASE, NEW)
# {"a.": [{ORTH: "a.", LEMMA: "all"}], ":)": [{ORTH: ":)"}]}
+table(["Name", "Type", "Description"])
+row
+cell #[code base_exceptions]
+cell dict
+cell Base tokenizer exceptions.
+row
+cell #[code *addition_dicts]
+cell dicts
+cell Exception dictionaries to add to the base exceptions, in order.
2017-10-03 12:27:22 +00:00
+row("foot")
+cell returns
2017-05-13 19:23:12 +00:00
+cell dict
+cell Combined tokenizer exceptions.
2017-11-06 23:22:43 +00:00
+h(3, "util.minibatch") util.minibatch
+tag function
+tag-new(2)
p
| Iterate over batches of items. #[code size] may be an iterator, so that
| batch-size can vary on each step.
+aside-code("Example").
batches = minibatch(train_data)
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations)
+table(["Name", "Type", "Description"])
+row
+cell #[code items]
+cell iterable
+cell The items to batch up.
+row
+cell #[code size]
+cell int / iterable
+cell
| The batch size(s). Use
| #[+api("top-level#util.compounding") #[code util.compounding]] or
| #[+api("top-level#util.decaying") #[code util.decaying]] or
| for an infinite series of compounding or decaying values.
+row("foot")
+cell yields
+cell list
+cell The batches.
+h(3, "util.compounding") util.compounding
+tag function
+tag-new(2)
p
| Yield an infinite series of compounding values. Each time the generator
| is called, a value is produced by multiplying the previous value by the
| compound rate.
+aside-code("Example").
sizes = compounding(1., 10., 1.5)
assert next(sizes) == 1.
assert next(sizes) == 1. * 1.5
assert next(sizes) == 1.5 * 1.5
+table(["Name", "Type", "Description"])
+row
+cell #[code start]
+cell int / float
+cell The first value.
+row
+cell #[code stop]
+cell int / float
+cell The maximum value.
+row
+cell #[code compound]
+cell int / float
+cell The compounding factor.
+row("foot")
+cell yields
+cell int
+cell Compounding values.
+h(3, "util.decaying") util.decaying
+tag function
+tag-new(2)
p
| Yield an infinite series of linearly decaying values.
+aside-code("Example").
sizes = decaying(1., 10., 0.001)
assert next(sizes) == 1.
assert next(sizes) == 1. - 0.001
assert next(sizes) == 0.999 - 0.001
+table(["Name", "Type", "Description"])
+row
+cell #[code start]
+cell int / float
+cell The first value.
+row
+cell #[code end]
+cell int / float
+cell The maximum value.
+row
+cell #[code decay]
+cell int / float
+cell The decaying factor.
+row("foot")
+cell yields
+cell int
+cell The decaying values.
+h(3, "util.itershuffle") util.itershuffle
+tag function
+tag-new(2)
p
| Shuffle an iterator. This works by holding #[code bufsize] items back and
| yielding them sometime later. Obviously, this is not unbiased but
| should be good enough for batching. Larger bufsize means less bias.
+aside-code("Example").
values = range(1000)
shuffled = itershuffle(values)
+table(["Name", "Type", "Description"])
+row
+cell #[code iterable]
+cell iterable
+cell Iterator to shuffle.
+row
+cell #[code buffsize]
+cell int
+cell Items to hold back.
+row("foot")
+cell yields
+cell iterable
+cell The shuffled iterator.