14 KiB
title | tag | source |
---|---|---|
DependencyParser | class | spacy/pipeline/pipes.pyx |
This class is a subclass of Pipe
and follows the same API. The pipeline
component is available in the processing pipeline
via the ID "parser"
.
DependencyParser.Model
Initialize a model for the pipe. The model should implement the
thinc.neural.Model
API. Wrappers are under development for most major machine
learning libraries.
Name | Type | Description |
---|---|---|
**kwargs |
- | Parameters for initializing the model |
RETURNS | object | The initialized model. |
DependencyParser.__init__
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
nlp.create_pipe
.
Example
# Construction via create_pipe parser = nlp.create_pipe("parser") # Construction from class from spacy.pipeline import DependencyParser parser = DependencyParser(nlp.vocab) parser.from_disk("/path/to/model")
Name | Type | Description |
---|---|---|
vocab |
Vocab |
The shared vocabulary. |
model |
thinc.neural.Model / True |
The model powering the pipeline component. If no model is supplied, the model is created when you call begin_training , from_disk or from_bytes . |
**cfg |
- | Configuration parameters. |
RETURNS | DependencyParser |
The newly constructed object. |
DependencyParser.__call__
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the nlp
object is called on a text
and all pipeline components are applied to the Doc
in order. Both
__call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
parser = DependencyParser(nlp.vocab) doc = nlp(u"This is a sentence.") # This usually happens under the hood processed = parser(doc)
Name | Type | Description |
---|---|---|
doc |
Doc |
The document to process. |
RETURNS | Doc |
The processed document. |
DependencyParser.pipe
Apply the pipe to a stream of documents. This usually happens under the hood
when the nlp
object is called on a text and all pipeline components are
applied to the Doc
in order. Both __call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
parser = DependencyParser(nlp.vocab) for doc in parser.pipe(docs, batch_size=50): pass
Name | Type | Description |
---|---|---|
stream |
iterable | A stream of documents. |
batch_size |
int | The number of texts to buffer. Defaults to 128 . |
YIELDS | Doc |
Processed documents in the order of the original text. |
DependencyParser.predict
Apply the pipeline's model to a batch of docs, without modifying them.
Example
parser = DependencyParser(nlp.vocab) scores = parser.predict([doc1, doc2])
Name | Type | Description |
---|---|---|
docs |
iterable | The documents to predict. |
RETURNS | tuple | A (scores, tensors) tuple where scores is the model's prediction for each document and tensors is the token representations used to predict the scores. Each tensor is an array with one row for each token in the document. |
DependencyParser.set_annotations
Modify a batch of documents, using pre-computed scores.
Example
parser = DependencyParser(nlp.vocab) scores = parser.predict([doc1, doc2]) parser.set_annotations([doc1, doc2], scores)
Name | Type | Description |
---|---|---|
docs |
iterable | The documents to modify. |
scores |
- | The scores to set, produced by DependencyParser.predict . |
DependencyParser.update
Learn from a batch of documents and gold-standard information, updating the
pipe's model. Delegates to predict
and
get_loss
.
Example
parser = DependencyParser(nlp.vocab) losses = {} optimizer = nlp.begin_training() parser.update([doc1, doc2], [gold1, gold2], losses=losses, sgd=optimizer)
Name | Type | Description |
---|---|---|
docs |
iterable | A batch of documents to learn from. |
golds |
iterable | The gold-standard data. Must have the same length as docs . |
drop |
float | The dropout rate. |
sgd |
callable | The optimizer. Should take two arguments weights and gradient , and an optional ID. |
losses |
dict | Optional record of the loss during training. The value keyed by the model's name is updated. |
DependencyParser.get_loss
Find the loss and gradient of loss for the batch of documents and their predicted scores.
Example
parser = DependencyParser(nlp.vocab) scores = parser.predict([doc1, doc2]) loss, d_loss = parser.get_loss([doc1, doc2], [gold1, gold2], scores)
Name | Type | Description |
---|---|---|
docs |
iterable | The batch of documents. |
golds |
iterable | The gold-standard data. Must have the same length as docs . |
scores |
- | Scores representing the model's predictions. |
RETURNS | tuple | The loss and the gradient, i.e. (loss, gradient) . |
DependencyParser.begin_training
Initialize the pipe for training, using data examples if available. If no model has been initialized yet, the model is added.
Example
parser = DependencyParser(nlp.vocab) nlp.pipeline.append(parser) optimizer = parser.begin_training(pipeline=nlp.pipeline)
Name | Type | Description |
---|---|---|
gold_tuples |
iterable | Optional gold-standard annotations from which to construct GoldParse objects. |
pipeline |
list | Optional list of pipeline components that this component is part of. |
sgd |
callable | An optional optimizer. Should take two arguments weights and gradient , and an optional ID. Will be created via DependencyParser if not set. |
RETURNS | callable | An optimizer. |
DependencyParser.create_optimizer
Create an optimizer for the pipeline component.
Example
parser = DependencyParser(nlp.vocab) optimizer = parser.create_optimizer()
Name | Type | Description |
---|---|---|
RETURNS | callable | The optimizer. |
DependencyParser.use_params
Modify the pipe's model, to use the given parameter values.
Example
parser = DependencyParser(nlp.vocab) with parser.use_params(): parser.to_disk("/best_model")
Name | Type | Description |
---|---|---|
params |
- | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
DependencyParser.add_label
Add a new label to the pipe.
Example
parser = DependencyParser(nlp.vocab) parser.add_label("MY_LABEL")
Name | Type | Description |
---|---|---|
label |
unicode | The label to add. |
DependencyParser.to_disk
Serialize the pipe to disk.
Example
parser = DependencyParser(nlp.vocab) parser.to_disk("/path/to/parser")
Name | Type | Description |
---|---|---|
path |
unicode / Path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. |
DependencyParser.from_disk
Load the pipe from disk. Modifies the object in place and returns it.
Example
parser = DependencyParser(nlp.vocab) parser.from_disk("/path/to/parser")
Name | Type | Description |
---|---|---|
path |
unicode / Path |
A path to a directory. Paths may be either strings or Path -like objects. |
RETURNS | DependencyParser |
The modified DependencyParser object. |
DependencyParser.to_bytes
Example
parser = DependencyParser(nlp.vocab) parser_bytes = parser.to_bytes()
Serialize the pipe to a bytestring.
Name | Type | Description |
---|---|---|
**exclude |
- | Named attributes to prevent from being serialized. |
RETURNS | bytes | The serialized form of the DependencyParser object. |
DependencyParser.from_bytes
Load the pipe from a bytestring. Modifies the object in place and returns it.
Example
parser_bytes = parser.to_bytes() parser = DependencyParser(nlp.vocab) parser.from_bytes(parser_bytes)
Name | Type | Description |
---|---|---|
bytes_data |
bytes | The data to load from. |
**exclude |
- | Named attributes to prevent from being loaded. |
RETURNS | DependencyParser |
The DependencyParser object. |
DependencyParser.labels
The labels currently added to the component.
Example
parser.add_label("MY_LABEL") assert "MY_LABEL" in parser.labels
Name | Type | Description |
---|---|---|
RETURNS | tuple | The labels added to the component. |