mirror of https://github.com/explosion/spaCy.git
401 lines
20 KiB
Markdown
401 lines
20 KiB
Markdown
---
|
||
title: Pipe
|
||
tag: class
|
||
teaser: Base class for trainable pipeline components
|
||
---
|
||
|
||
This class is a base class and **not instantiated directly**. Trainable pipeline
|
||
components like the [`EntityRecognizer`](/api/entityrecognizer) or
|
||
[`TextCategorizer`](/api/textcategorizer) inherit from it and it defines the
|
||
interface that components should follow to function as trainable components in a
|
||
spaCy pipeline. See the docs on
|
||
[writing trainable components](/usage/processing-pipelines#trainable-components)
|
||
for how to use the `Pipe` base class to implement custom components.
|
||
|
||
> #### Why is Pipe implemented in Cython?
|
||
>
|
||
> The `Pipe` class is implemented in a `.pyx` module, the extension used by
|
||
> [Cython](/api/cython). This is needed so that **other** Cython classes, like
|
||
> the [`EntityRecognizer`](/api/entityrecognizer) can inherit from it. But it
|
||
> doesn't mean you have to implement trainable components in Cython – pure
|
||
> Python components like the [`TextCategorizer`](/api/textcategorizer) can also
|
||
> inherit from `Pipe`.
|
||
|
||
```python
|
||
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/pipe.pyx
|
||
```
|
||
|
||
## Pipe.\_\_init\_\_ {#init tag="method"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from spacy.pipeline import Pipe
|
||
> from spacy.language import Language
|
||
>
|
||
> class CustomPipe(Pipe):
|
||
> ...
|
||
>
|
||
> @Language.factory("your_custom_pipe", default_config={"model": MODEL})
|
||
> def make_custom_pipe(nlp, name, model):
|
||
> return CustomPipe(nlp.vocab, model, name)
|
||
> ```
|
||
|
||
Create a new pipeline instance. In your application, you would normally use a
|
||
shortcut for this and instantiate the component using its string name and
|
||
[`nlp.add_pipe`](/api/language#create_pipe).
|
||
|
||
| Name | Type | Description |
|
||
| ------- | ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `vocab` | `Vocab` | The shared vocabulary. |
|
||
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
|
||
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
|
||
| `**cfg` | | Additional config parameters and settings. Will be available as the dictionary `Pipe.cfg` and is serialized with the component. |
|
||
|
||
## Pipe.\_\_call\_\_ {#call tag="method"}
|
||
|
||
Apply the pipe to one document. The document is modified in place, and returned.
|
||
This usually happens under the hood when the `nlp` object is called on a text
|
||
and all pipeline components are applied to the `Doc` in order. Both
|
||
[`__call__`](/api/pipe#call) and [`pipe`](/api/pipe#pipe) delegate to the
|
||
[`predict`](/api/pipe#predict) and
|
||
[`set_annotations`](/api/pipe#set_annotations) methods.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> doc = nlp("This is a sentence.")
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> # This usually happens under the hood
|
||
> processed = pipe(doc)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ----- | ------------------------ |
|
||
| `doc` | `Doc` | The document to process. |
|
||
| **RETURNS** | `Doc` | The processed document. |
|
||
|
||
## Pipe.pipe {#pipe tag="method"}
|
||
|
||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||
when the `nlp` object is called on a text and all pipeline components are
|
||
applied to the `Doc` in order. Both [`__call__`](/api/pipe#call) and
|
||
[`pipe`](/api/pipe#pipe) delegate to the [`predict`](/api/pipe#predict) and
|
||
[`set_annotations`](/api/pipe#set_annotations) methods.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> for doc in pipe.pipe(docs, batch_size=50):
|
||
> pass
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | ----------------------------------------------------- |
|
||
| `stream` | `Iterable[Doc]` | A stream of documents. |
|
||
| _keyword-only_ | | |
|
||
| `batch_size` | int | The number of documents to buffer. Defaults to `128`. |
|
||
| **YIELDS** | `Doc` | The processed documents in order. |
|
||
|
||
## Pipe.begin_training {#begin_training tag="method"}
|
||
|
||
Initialize the component for training and return an
|
||
[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a
|
||
function that returns an iterable of [`Example`](/api/example) objects. The data
|
||
examples are used to **initialize the model** of the component and can either be
|
||
the full training data or a representative sample. Initialization includes
|
||
validating the network,
|
||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||
setting up the label scheme based on the data.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> optimizer = pipe.begin_training(lambda: [], pipeline=nlp.pipeline)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------- |
|
||
| `get_examples` | `Callable[[], Iterable[Example]]` | Optional function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. |
|
||
| _keyword-only_ | | |
|
||
| `pipeline` | `List[Tuple[str, Callable]]` | Optional list of pipeline components that this component is part of. |
|
||
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | An optional optimizer. Will be created via [`create_optimizer`](/api/pipe#create_optimizer) if not set. |
|
||
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
|
||
## Pipe.predict {#predict tag="method"}
|
||
|
||
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
|
||
modifying them.
|
||
|
||
<Infobox variant="danger">
|
||
|
||
This method needs to be overwritten with your own custom `predict` method.
|
||
|
||
</Infobox>
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> scores = pipe.predict([doc1, doc2])
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | --------------- | ----------------------------------------- |
|
||
| `docs` | `Iterable[Doc]` | The documents to predict. |
|
||
| **RETURNS** | - | The model's prediction for each document. |
|
||
|
||
## Pipe.set_annotations {#set_annotations tag="method"}
|
||
|
||
Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores.
|
||
|
||
<Infobox variant="danger">
|
||
|
||
This method needs to be overwritten with your own custom `set_annotations`
|
||
method.
|
||
|
||
</Infobox>
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> scores = pipe.predict(docs)
|
||
> pipe.set_annotations(docs, scores)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------- | --------------- | ---------------------------------------------- |
|
||
| `docs` | `Iterable[Doc]` | The documents to modify. |
|
||
| `scores` | - | The scores to set, produced by `Pipe.predict`. |
|
||
|
||
## Pipe.update {#update tag="method"}
|
||
|
||
Learn from a batch of [`Example`](/api/example) objects containing the
|
||
predictions and gold-standard annotations, and update the component's model.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> optimizer = nlp.begin_training()
|
||
> losses = pipe.update(examples, sgd=optimizer)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
|
||
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
|
||
| _keyword-only_ | | |
|
||
| `drop` | float | The dropout rate. |
|
||
| `set_annotations` | bool | Whether or not to update the `Example` objects with the predictions, delegating to [`set_annotations`](/api/pipe#set_annotations). |
|
||
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
| `losses` | `Dict[str, float]` | Optional record of the loss during training. Updated using the component name as the key. |
|
||
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
|
||
|
||
## Pipe.rehearse {#rehearse tag="method,experimental" new="3"}
|
||
|
||
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
|
||
current model to make predictions similar to an initial model, to try to address
|
||
the "catastrophic forgetting" problem. This feature is experimental.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> optimizer = nlp.resume_training()
|
||
> losses = pipe.rehearse(examples, sgd=optimizer)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------------------------------------------- | ----------------------------------------------------------------------------------------- |
|
||
| `examples` | `Iterable[Example]` | A batch of [`Example`](/api/example) objects to learn from. |
|
||
| _keyword-only_ | | |
|
||
| `drop` | float | The dropout rate. |
|
||
| `sgd` | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
| `losses` | `Dict[str, float]` | Optional record of the loss during training. Updated using the component name as the key. |
|
||
| **RETURNS** | `Dict[str, float]` | The updated `losses` dictionary. |
|
||
|
||
## Pipe.get_loss {#get_loss tag="method"}
|
||
|
||
Find the loss and gradient of loss for the batch of documents and their
|
||
predicted scores.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> ner = nlp.add_pipe("ner")
|
||
> scores = ner.predict([eg.predicted for eg in examples])
|
||
> loss, d_loss = ner.get_loss(examples, scores)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | --------------------- | --------------------------------------------------- |
|
||
| `examples` | `Iterable[Example]` | The batch of examples. |
|
||
| `scores` | | Scores representing the model's predictions. |
|
||
| **RETURNS** | `Tuple[float, float]` | The loss and the gradient, i.e. `(loss, gradient)`. |
|
||
|
||
## Pipe.score {#score tag="method" new="3"}
|
||
|
||
Score a batch of examples.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> scores = pipe.score(examples)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ------------------- | --------------------------------------------------------- |
|
||
| `examples` | `Iterable[Example]` | The examples to score. |
|
||
| **RETURNS** | `Dict[str, Any]` | The scores, e.g. produced by the [`Scorer`](/api/scorer). |
|
||
|
||
## Pipe.create_optimizer {#create_optimizer tag="method"}
|
||
|
||
Create an optimizer for the pipeline component. Defaults to
|
||
[`Adam`](https://thinc.ai/docs/api-optimizers#adam) with default settings.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> optimizer = pipe.create_optimizer()
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | --------------------------------------------------- | -------------- |
|
||
| **RETURNS** | [`Optimizer`](https://thinc.ai/docs/api-optimizers) | The optimizer. |
|
||
|
||
## Pipe.add_label {#add_label tag="method"}
|
||
|
||
Add a new label to the pipe. It's possible to extend pretrained models with new
|
||
labels, but care should be taken to avoid the "catastrophic forgetting" problem.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe.add_label("MY_LABEL")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| ----------- | ---- | --------------------------------------------------- |
|
||
| `label` | str | The label to add. |
|
||
| **RETURNS** | int | `0` if the label is already present, otherwise `1`. |
|
||
|
||
## Pipe.use_params {#use_params tag="method, contextmanager"}
|
||
|
||
Modify the pipe's model, to use the given parameter values. At the end of the
|
||
context, the original parameters are restored.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> with pipe.use_params(optimizer.averages):
|
||
> pipe.to_disk("/best_model")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------- | ---- | ----------------------------------------- |
|
||
| `params` | dict | The parameter values to use in the model. |
|
||
|
||
## Pipe.to_disk {#to_disk tag="method"}
|
||
|
||
Serialize the pipe to disk.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe.to_disk("/path/to/pipe")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||
| `path` | str / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
|
||
## Pipe.from_disk {#from_disk tag="method"}
|
||
|
||
Load the pipe from disk. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe.from_disk("/path/to/pipe")
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | -------------------------------------------------------------------------- |
|
||
| `path` | str / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | `Pipe` | The modified pipe. |
|
||
|
||
## Pipe.to_bytes {#to_bytes tag="method"}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe_bytes = pipe.to_bytes()
|
||
> ```
|
||
|
||
Serialize the pipe to a bytestring.
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | bytes | The serialized form of the pipe. |
|
||
|
||
## Pipe.from_bytes {#from_bytes tag="method"}
|
||
|
||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> pipe_bytes = pipe.to_bytes()
|
||
> pipe = nlp.add_pipe("your_custom_pipe")
|
||
> pipe.from_bytes(pipe_bytes)
|
||
> ```
|
||
|
||
| Name | Type | Description |
|
||
| -------------- | --------------- | ------------------------------------------------------------------------- |
|
||
| `bytes_data` | bytes | The data to load from. |
|
||
| _keyword-only_ | | |
|
||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||
| **RETURNS** | `Pipe` | The pipe. |
|
||
|
||
## Attributes {#attributes}
|
||
|
||
| Name | Type | Description |
|
||
| ------- | ------------------------------------------ | ----------------------------------------------------------------------------------------------------- |
|
||
| `vocab` | [`Vocab`](/api/vocab) | The shared vocabulary that's passed in on initialization. |
|
||
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The model powering the component. |
|
||
| `name` | str | The name of the component instance in the pipeline. Can be used in the losses. |
|
||
| `cfg` | dict | Keyword arguments passed to [`Pipe.__init__`](/api/pipe#init). Will be serialized with the component. |
|
||
|
||
## Serialization fields {#serialization-fields}
|
||
|
||
During serialization, spaCy will export several data fields used to restore
|
||
different aspects of the object. If needed, you can exclude them from
|
||
serialization by passing in the string names via the `exclude` argument.
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> data = pipe.to_disk("/path", exclude=["vocab"])
|
||
> ```
|
||
|
||
| Name | Description |
|
||
| ------- | -------------------------------------------------------------- |
|
||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||
| `model` | The binary model data. You usually don't want to exclude this. |
|