14 KiB
title | teaser | tag | source | new |
---|---|---|---|---|
EntityLinker | Functionality to disambiguate a named entity in text to a unique knowledge base identifier. | class | spacy/pipeline/pipes.pyx | 2.2 |
This class is a subclass of Pipe
and follows the same API. The pipeline
component is available in the processing pipeline
via the ID "entity_linker"
.
EntityLinker.__init__
Example
# Construction via create_pipe with default model entity_linker = nlp.create_pipe("entity_linker") # Construction via create_pipe with custom model config = {"model": {"@architectures": "my_el"}} entity_linker = nlp.create_pipe("entity_linker", config) # Construction from class with custom model from file from spacy.pipeline import EntityLinker model = util.load_config("model.cfg", create_objects=True)["model"] entity_linker = EntityLinker(nlp.vocab, model)
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
nlp.create_pipe
.
Name | Type | Description |
---|---|---|
vocab |
Vocab |
The shared vocabulary. |
model |
Model |
The Model powering the pipeline component. |
**cfg |
- | Configuration parameters. |
| RETURNS | EntityLinker
| The newly constructed object. |
EntityLinker.__call__
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the nlp
object is called on a text
and all pipeline components are applied to the Doc
in order. Both
__call__
and pipe
delegate to the predict
and
set_annotations
methods.
Example
entity_linker = EntityLinker(nlp.vocab) doc = nlp("This is a sentence.") # This usually happens under the hood processed = entity_linker(doc)
Name | Type | Description |
---|---|---|
doc |
Doc |
The document to process. |
RETURNS | Doc |
The processed document. |
EntityLinker.pipe
Apply the pipe to a stream of documents. This usually happens under the hood
when the nlp
object is called on a text and all pipeline components are
applied to the Doc
in order. Both __call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
entity_linker = EntityLinker(nlp.vocab) for doc in entity_linker.pipe(docs, batch_size=50): pass
Name | Type | Description |
---|---|---|
stream |
Iterable[Doc] |
A stream of documents. |
batch_size |
int | The number of texts to buffer. Defaults to 128 . |
YIELDS | Doc |
Processed documents in the order of the original text. |
EntityLinker.predict
Apply the pipeline's model to a batch of docs, without modifying them.
Example
entity_linker = EntityLinker(nlp.vocab) kb_ids, tensors = entity_linker.predict([doc1, doc2])
Name | Type | Description |
---|---|---|
docs |
iterable | The documents to predict. |
RETURNS | tuple | A (kb_ids, tensors) tuple where kb_ids are the model's predicted KB identifiers for the entities in the docs , and tensors are the token representations used to predict these identifiers. |
EntityLinker.set_annotations
Modify a batch of documents, using pre-computed entity IDs for a list of named entities.
Example
entity_linker = EntityLinker(nlp.vocab) kb_ids, tensors = entity_linker.predict([doc1, doc2]) entity_linker.set_annotations([doc1, doc2], kb_ids, tensors)
Name | Type | Description |
---|---|---|
docs |
iterable | The documents to modify. |
kb_ids |
iterable | The knowledge base identifiers for the entities in the docs, predicted by EntityLinker.predict . |
tensors |
iterable | The token representations used to predict the identifiers. |
EntityLinker.update
Learn from a batch of Example
objects, updating both the
pipe's entity linking model and context encoder. Delegates to
predict
and
get_loss
.
Example
entity_linker = EntityLinker(nlp.vocab, nel_model) optimizer = nlp.begin_training() losses = entity_linker.update(examples, sgd=optimizer)
Name | Type | Description |
---|---|---|
examples |
Iterable[Example] |
A batch of Example objects to learn from. |
keyword-only | ||
drop |
float | The dropout rate. |
set_annotations |
bool | Whether or not to update the Example objects with the predictions, delegating to set_annotations . |
sgd |
Optimizer |
Optimizer object. |
losses |
Dict[str, float] |
Optional record of the loss during training. The value keyed by the model's name is updated. |
RETURNS | Dict[str, float] |
The updated losses dictionary. |
EntityLinker.get_loss
Find the loss and gradient of loss for the entities in a batch of documents and their predicted scores.
Example
entity_linker = EntityLinker(nlp.vocab) kb_ids, tensors = entity_linker.predict(docs) loss, d_loss = entity_linker.get_loss(docs, [gold1, gold2], kb_ids, tensors)
Name | Type | Description |
---|---|---|
docs |
iterable | The batch of documents. |
golds |
iterable | The gold-standard data. Must have the same length as docs . |
kb_ids |
iterable | KB identifiers representing the model's predictions. |
tensors |
iterable | The token representations used to predict the identifiers |
RETURNS | tuple | The loss and the gradient, i.e. (loss, gradient) . |
EntityLinker.set_kb
Define the knowledge base (KB) used for disambiguating named entities to KB identifiers.
Example
entity_linker = EntityLinker(nlp.vocab) entity_linker.set_kb(kb)
Name | Type | Description |
---|---|---|
kb |
KnowledgeBase |
The KnowledgeBase . |
EntityLinker.begin_training
Initialize the pipe for training, using data examples if available. Return an
Optimizer
object. Before calling this
method, a knowledge base should have been defined with
set_kb
.
Example
entity_linker = EntityLinker(nlp.vocab) entity_linker.set_kb(kb) nlp.add_pipe(entity_linker, last=True) optimizer = entity_linker.begin_training(pipeline=nlp.pipeline)
Name | Type | Description |
---|---|---|
get_examples |
Iterable[Example] |
Optional gold-standard annotations in the form of Example objects. |
pipeline |
List[(str, callable)] |
Optional list of pipeline components that this component is part of. |
sgd |
Optimizer |
An optional Optimizer object. Will be created via create_optimizer if not set. |
RETURNS | Optimizer |
An optimizer. |
EntityLinker.create_optimizer
Create an optimizer for the pipeline component.
Example
entity_linker = EntityLinker(nlp.vocab) optimizer = entity_linker.create_optimizer()
Name | Type | Description |
---|---|---|
RETURNS | callable | The optimizer. |
EntityLinker.use_params
Modify the pipe's EL model, to use the given parameter values.
Example
entity_linker = EntityLinker(nlp.vocab) with entity_linker.use_params(optimizer.averages): entity_linker.to_disk("/best_model")
Name | Type | Description |
---|---|---|
params |
dict | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
EntityLinker.to_disk
Serialize the pipe to disk.
Example
entity_linker = EntityLinker(nlp.vocab) entity_linker.to_disk("/path/to/entity_linker")
Name | Type | Description |
---|---|---|
path |
str / Path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. |
exclude |
list | String names of serialization fields to exclude. |
EntityLinker.from_disk
Load the pipe from disk. Modifies the object in place and returns it.
Example
entity_linker = EntityLinker(nlp.vocab) entity_linker.from_disk("/path/to/entity_linker")
Name | Type | Description |
---|---|---|
path |
str / Path |
A path to a directory. Paths may be either strings or Path -like objects. |
exclude |
list | String names of serialization fields to exclude. |
RETURNS | EntityLinker |
The modified EntityLinker object. |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Example
data = entity_linker.to_disk("/path", exclude=["vocab"])
Name | Description |
---|---|
vocab |
The shared Vocab . |
cfg |
The config file. You usually don't want to exclude this. |
model |
The binary model data. You usually don't want to exclude this. |
kb |
The knowledge base. You usually don't want to exclude this. |