mirror of https://github.com/explosion/spaCy.git
226 lines
11 KiB
Markdown
226 lines
11 KiB
Markdown
---
|
|
title: Tokenizer
|
|
teaser: Segment text into words, punctuations marks etc.
|
|
tag: class
|
|
source: spacy/tokenizer.pyx
|
|
---
|
|
|
|
Segment text, and create `Doc` objects with the discovered segment boundaries. For a deeper understanding, see the docs on [how spaCy's tokenizer works](/usage/linguistic-features#how-tokenizer-works).
|
|
|
|
## Tokenizer.\_\_init\_\_ {#init tag="method"}
|
|
|
|
Create a `Tokenizer`, to create `Doc` objects given unicode text. For examples
|
|
of how to construct a custom tokenizer with different tokenization rules, see
|
|
the
|
|
[usage documentation](https://spacy.io/usage/linguistic-features#native-tokenizers).
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> # Construction 1
|
|
> from spacy.tokenizer import Tokenizer
|
|
> from spacy.lang.en import English
|
|
> nlp = English()
|
|
> # Create a blank Tokenizer with just the English vocab
|
|
> tokenizer = Tokenizer(nlp.vocab)
|
|
>
|
|
> # Construction 2
|
|
> from spacy.lang.en import English
|
|
> nlp = English()
|
|
> # Create a Tokenizer with the default settings for English
|
|
> # including punctuation rules and exceptions
|
|
> tokenizer = nlp.Defaults.create_tokenizer(nlp)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ---------------- | ----------- | ----------------------------------------------------------------------------------- |
|
|
| `vocab` | `Vocab` | A storage container for lexical types. |
|
|
| `rules` | dict | Exceptions and special-cases for the tokenizer. |
|
|
| `prefix_search` | callable | A function matching the signature of `re.compile(string).search` to match prefixes. |
|
|
| `suffix_search` | callable | A function matching the signature of `re.compile(string).search` to match suffixes. |
|
|
| `infix_finditer` | callable | A function matching the signature of `re.compile(string).finditer` to find infixes. |
|
|
| `token_match` | callable | A boolean function matching strings to be recognized as tokens. |
|
|
| **RETURNS** | `Tokenizer` | The newly constructed object. |
|
|
|
|
## Tokenizer.\_\_call\_\_ {#call tag="method"}
|
|
|
|
Tokenize a string.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokens = tokenizer(u"This is a sentence")
|
|
> assert len(tokens) == 4
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------- | --------------------------------------- |
|
|
| `string` | unicode | The string to tokenize. |
|
|
| **RETURNS** | `Doc` | A container for linguistic annotations. |
|
|
|
|
## Tokenizer.pipe {#pipe tag="method"}
|
|
|
|
Tokenize a stream of texts.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> texts = [u"One document.", u"...", u"Lots of documents"]
|
|
> for doc in tokenizer.pipe(texts, batch_size=50):
|
|
> pass
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------ | ----- | ---------------------------------------------------------------------------- |
|
|
| `texts` | - | A sequence of unicode texts. |
|
|
| `batch_size` | int | The number of texts to accumulate in an internal buffer. Defaults to `1000`. |
|
|
| **YIELDS** | `Doc` | A sequence of Doc objects, in order. |
|
|
|
|
## Tokenizer.find_infix {#find_infix tag="method"}
|
|
|
|
Find internal split points of the string.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------- | -------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `string` | unicode | The string to split. |
|
|
| **RETURNS** | list | A list of `re.MatchObject` objects that have `.start()` and `.end()` methods, denoting the placement of internal segment separators, e.g. hyphens. |
|
|
|
|
## Tokenizer.find_prefix {#find_prefix tag="method"}
|
|
|
|
Find the length of a prefix that should be segmented from the string, or `None`
|
|
if no prefix rules match.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------- | ------------------------------------------------------ |
|
|
| `string` | unicode | The string to segment. |
|
|
| **RETURNS** | int | The length of the prefix if present, otherwise `None`. |
|
|
|
|
## Tokenizer.find_suffix {#find_suffix tag="method"}
|
|
|
|
Find the length of a suffix that should be segmented from the string, or `None`
|
|
if no suffix rules match.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ------------ | ------------------------------------------------------ |
|
|
| `string` | unicode | The string to segment. |
|
|
| **RETURNS** | int / `None` | The length of the suffix if present, otherwise `None`. |
|
|
|
|
## Tokenizer.add_special_case {#add_special_case tag="method"}
|
|
|
|
Add a special-case tokenization rule. This mechanism is also used to add custom
|
|
tokenizer exceptions to the language data. See the usage guide on
|
|
[adding languages](/usage/adding-languages#tokenizer-exceptions) and [linguistic features](/usage/linguistic-features#special-cases) for more
|
|
details and examples.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.attrs import ORTH, LEMMA
|
|
> case = [{ORTH: "do"}, {ORTH: "n't", LEMMA: "not"}]
|
|
> tokenizer.add_special_case("don't", case)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------- | -------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `string` | unicode | The string to specially tokenize. |
|
|
| `token_attrs` | iterable | A sequence of dicts, where each dict describes a token and its attributes. The `ORTH` fields of the attributes must exactly match the string when they are concatenated. |
|
|
|
|
## Tokenizer.to_disk {#to_disk tag="method"}
|
|
|
|
Serialize the tokenizer to disk.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokenizer = Tokenizer(nlp.vocab)
|
|
> tokenizer.to_disk("/path/to/tokenizer")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| --------- | ---------------- | --------------------------------------------------------------------------------------------------------------------- |
|
|
| `path` | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
|
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
|
|
## Tokenizer.from_disk {#from_disk tag="method"}
|
|
|
|
Load the tokenizer from disk. Modifies the object in place and returns it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokenizer = Tokenizer(nlp.vocab)
|
|
> tokenizer.from_disk("/path/to/tokenizer")
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ---------------- | -------------------------------------------------------------------------- |
|
|
| `path` | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
|
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `Tokenizer` | The modified `Tokenizer` object. |
|
|
|
|
## Tokenizer.to_bytes {#to_bytes tag="method"}
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokenizer = tokenizer(nlp.vocab)
|
|
> tokenizer_bytes = tokenizer.to_bytes()
|
|
> ```
|
|
|
|
Serialize the tokenizer to a bytestring.
|
|
|
|
| Name | Type | Description |
|
|
| ----------- | ----- | ------------------------------------------------------------------------- |
|
|
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | bytes | The serialized form of the `Tokenizer` object. |
|
|
|
|
## Tokenizer.from_bytes {#from_bytes tag="method"}
|
|
|
|
Load the tokenizer from a bytestring. Modifies the object in place and returns
|
|
it.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> tokenizer_bytes = tokenizer.to_bytes()
|
|
> tokenizer = Tokenizer(nlp.vocab)
|
|
> tokenizer.from_bytes(tokenizer_bytes)
|
|
> ```
|
|
|
|
| Name | Type | Description |
|
|
| ------------ | ----------- | ------------------------------------------------------------------------- |
|
|
| `bytes_data` | bytes | The data to load from. |
|
|
| `exclude` | list | String names of [serialization fields](#serialization-fields) to exclude. |
|
|
| **RETURNS** | `Tokenizer` | The `Tokenizer` object. |
|
|
|
|
## Attributes {#attributes}
|
|
|
|
| Name | Type | Description |
|
|
| ---------------- | ------- | -------------------------------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | `Vocab` | The vocab object of the parent `Doc`. |
|
|
| `prefix_search` | - | A function to find segment boundaries from the start of a string. Returns the length of the segment, or `None`. |
|
|
| `suffix_search` | - | A function to find segment boundaries from the end of a string. Returns the length of the segment, or `None`. |
|
|
| `infix_finditer` | - | A function to find internal segment separators, e.g. hyphens. Returns a (possibly empty) list of `re.MatchObject` objects. |
|
|
|
|
## Serialization fields {#serialization-fields}
|
|
|
|
During serialization, spaCy will export several data fields used to restore
|
|
different aspects of the object. If needed, you can exclude them from
|
|
serialization by passing in the string names via the `exclude` argument.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> data = tokenizer.to_bytes(exclude=["vocab", "exceptions"])
|
|
> tokenizer.from_disk("./data", exclude=["token_match"])
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ---------------- | --------------------------------- |
|
|
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
|
| `prefix_search` | The prefix rules. |
|
|
| `suffix_search` | The suffix rules. |
|
|
| `infix_finditer` | The infix rules. |
|
|
| `token_match` | The token match expression. |
|
|
| `exceptions` | The tokenizer exception rules. |
|