spaCy/spacy/en/__init__.py

141 lines
4.1 KiB
Python

from __future__ import unicode_literals
from os import path
import re
from .. import orth
from ..vocab import Vocab
from ..tokenizer import Tokenizer
from ..syntax.arc_eager import ArcEager
from ..syntax.ner import BiluoPushDown
from ..syntax.parser import ParserFactory
from ..tokens import Doc
from ..multi_words import RegexMerger
from .pos import EnPosTagger
from .pos import POS_TAGS
from .attrs import get_flags
from . import regexes
from ..exceptions import ModelNotLoaded
from ..util import read_lang_data
def get_lex_props(string):
return {
'flags': get_flags(string),
'length': len(string),
'orth': string,
'lower': string.lower(),
'norm': string,
'shape': orth.word_shape(string),
'prefix': string[0],
'suffix': string[-3:],
'cluster': 0,
'prob': 0,
'sentiment': 0
}
if_model_present = -1
class English(object):
"""The English NLP pipeline.
Example:
Load data from default directory:
>>> nlp = English()
>>> nlp = English(data_dir=u'')
Load data from specified directory:
>>> nlp = English(data_dir=u'path/to/data_directory')
Disable (and avoid loading) parts of the processing pipeline:
>>> nlp = English(vectors=False, parser=False, tagger=False, entity=False)
Start with nothing loaded:
>>> nlp = English(data_dir=None)
"""
ParserTransitionSystem = ArcEager
EntityTransitionSystem = BiluoPushDown
def __init__(self,
data_dir=path.join(path.dirname(__file__), 'data'),
Tokenizer=Tokenizer.from_dir,
Tagger=EnPosTagger,
Parser=ParserFactory(ParserTransitionSystem),
Entity=ParserFactory(EntityTransitionSystem),
load_vectors=True
):
self._data_dir = data_dir
self.vocab = Vocab(data_dir=path.join(data_dir, 'vocab') if data_dir else None,
get_lex_props=get_lex_props, load_vectors=load_vectors,
pos_tags=POS_TAGS)
if Tagger is True:
Tagger = EnPosTagger
if Parser is True:
transition_system = self.ParserTransitionSystem
Parser = lambda s, d: parser.Parser(s, d, transition_system)
if Entity is True:
transition_system = self.EntityTransitionSystem
Entity = lambda s, d: parser.Parser(s, d, transition_system)
self.tokenizer = Tokenizer(self.vocab, path.join(data_dir, 'tokenizer'))
if Tagger:
self.tagger = Tagger(self.vocab.strings, data_dir)
else:
self.tagger = None
if Parser:
self.parser = Parser(self.vocab.strings, path.join(data_dir, 'deps'))
else:
self.parser = None
if Entity:
self.entity = Entity(self.vocab.strings, path.join(data_dir, 'ner'))
else:
self.entity = None
self.mwe_merger = RegexMerger([
('IN', 'O', regexes.MW_PREPOSITIONS_RE),
('CD', 'TIME', regexes.TIME_RE),
('NNP', 'DATE', regexes.DAYS_RE),
('CD', 'MONEY', regexes.MONEY_RE)])
def __call__(self, text, tag=True, parse=True, entity=True):
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
is preserved.
Args:
text (unicode): The text to be processed.
Returns:
tokens (spacy.tokens.Tokens):
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].orth_, tokens[0].head.tag_
('An', 'NN')
"""
tokens = self.tokenizer(text)
if self.tagger and tag:
self.tagger(tokens)
if self.parser and parse:
self.parser(tokens)
if self.entity and entity:
self.entity(tokens)
return tokens
@property
def tags(self):
"""List of part-of-speech tag names."""
return self.tagger.tag_names