from __future__ import unicode_literals from os import path import re from .. import orth from ..vocab import Vocab from ..tokenizer import Tokenizer from ..syntax.arc_eager import ArcEager from ..syntax.ner import BiluoPushDown from ..syntax.parser import ParserFactory from ..tokens import Doc from ..multi_words import RegexMerger from .pos import EnPosTagger from .pos import POS_TAGS from .attrs import get_flags from . import regexes from ..exceptions import ModelNotLoaded from ..util import read_lang_data def get_lex_props(string): return { 'flags': get_flags(string), 'length': len(string), 'orth': string, 'lower': string.lower(), 'norm': string, 'shape': orth.word_shape(string), 'prefix': string[0], 'suffix': string[-3:], 'cluster': 0, 'prob': 0, 'sentiment': 0 } if_model_present = -1 class English(object): """The English NLP pipeline. Example: Load data from default directory: >>> nlp = English() >>> nlp = English(data_dir=u'') Load data from specified directory: >>> nlp = English(data_dir=u'path/to/data_directory') Disable (and avoid loading) parts of the processing pipeline: >>> nlp = English(vectors=False, parser=False, tagger=False, entity=False) Start with nothing loaded: >>> nlp = English(data_dir=None) """ ParserTransitionSystem = ArcEager EntityTransitionSystem = BiluoPushDown def __init__(self, data_dir=path.join(path.dirname(__file__), 'data'), Tokenizer=Tokenizer.from_dir, Tagger=EnPosTagger, Parser=ParserFactory(ParserTransitionSystem), Entity=ParserFactory(EntityTransitionSystem), load_vectors=True ): self._data_dir = data_dir self.vocab = Vocab(data_dir=path.join(data_dir, 'vocab') if data_dir else None, get_lex_props=get_lex_props, load_vectors=load_vectors, pos_tags=POS_TAGS) if Tagger is True: Tagger = EnPosTagger if Parser is True: transition_system = self.ParserTransitionSystem Parser = lambda s, d: parser.Parser(s, d, transition_system) if Entity is True: transition_system = self.EntityTransitionSystem Entity = lambda s, d: parser.Parser(s, d, transition_system) self.tokenizer = Tokenizer(self.vocab, path.join(data_dir, 'tokenizer')) if Tagger: self.tagger = Tagger(self.vocab.strings, data_dir) else: self.tagger = None if Parser: self.parser = Parser(self.vocab.strings, path.join(data_dir, 'deps')) else: self.parser = None if Entity: self.entity = Entity(self.vocab.strings, path.join(data_dir, 'ner')) else: self.entity = None self.mwe_merger = RegexMerger([ ('IN', 'O', regexes.MW_PREPOSITIONS_RE), ('CD', 'TIME', regexes.TIME_RE), ('NNP', 'DATE', regexes.DAYS_RE), ('CD', 'MONEY', regexes.MONEY_RE)]) def __call__(self, text, tag=True, parse=True, entity=True): """Apply the pipeline to some text. The text can span multiple sentences, and can contain arbtrary whitespace. Alignment into the original string is preserved. Args: text (unicode): The text to be processed. Returns: tokens (spacy.tokens.Tokens): >>> from spacy.en import English >>> nlp = English() >>> tokens = nlp('An example sentence. Another example sentence.') >>> tokens[0].orth_, tokens[0].head.tag_ ('An', 'NN') """ tokens = self.tokenizer(text) if self.tagger and tag: self.tagger(tokens) if self.parser and parse: self.parser(tokens) if self.entity and entity: self.entity(tokens) return tokens @property def tags(self): """List of part-of-speech tag names.""" return self.tagger.tag_names