mirror of https://github.com/explosion/spaCy.git
199 lines
9.0 KiB
Markdown
199 lines
9.0 KiB
Markdown
---
|
|
title: DependencyMatcher
|
|
teaser: Match sequences of tokens, based on the dependency parse
|
|
tag: class
|
|
source: spacy/matcher/dependencymatcher.pyx
|
|
---
|
|
|
|
The `DependencyMatcher` follows the same API as the [`Matcher`](/api/matcher)
|
|
and [`PhraseMatcher`](/api/phrasematcher) and lets you match on dependency trees
|
|
using the
|
|
[Semgrex syntax](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html).
|
|
It requires a pretrained [`DependencyParser`](/api/parser) or other component
|
|
that sets the `Token.dep` attribute.
|
|
|
|
## Pattern format {#patterns}
|
|
|
|
> ```json
|
|
> ### Example
|
|
> [
|
|
> {
|
|
> "SPEC": {"NODE_NAME": "founded"},
|
|
> "PATTERN": {"ORTH": "founded"}
|
|
> },
|
|
> {
|
|
> "SPEC": {
|
|
> "NODE_NAME": "founder",
|
|
> "NBOR_RELOP": ">",
|
|
> "NBOR_NAME": "founded"
|
|
> },
|
|
> "PATTERN": {"DEP": "nsubj"}
|
|
> },
|
|
> {
|
|
> "SPEC": {
|
|
> "NODE_NAME": "object",
|
|
> "NBOR_RELOP": ">",
|
|
> "NBOR_NAME": "founded"
|
|
> },
|
|
> "PATTERN": {"DEP": "dobj"}
|
|
> }
|
|
> ]
|
|
> ```
|
|
|
|
A pattern added to the `DependencyMatcher` consists of a list of dictionaries,
|
|
with each dictionary describing a node to match. Each pattern should have the
|
|
following top-level keys:
|
|
|
|
| Name | Description |
|
|
| --------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `PATTERN` | The token attributes to match in the same format as patterns provided to the regular token-based [`Matcher`](/api/matcher). ~~Dict[str, Any]~~ |
|
|
| `SPEC` | The relationships of the nodes in the subtree that should be matched. ~~Dict[str, str]~~ |
|
|
|
|
The `SPEC` includes the following fields:
|
|
|
|
| Name | Description |
|
|
| ------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `NODE_NAME` | A unique name for this node to refer to it in other specs. ~~str~~ |
|
|
| `NBOR_RELOP` | A [Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html) operator that describes how the two nodes are related. ~~str~~ |
|
|
| `NBOR_NAME` | The unique name of the node that this node is connected to. ~~str~~ |
|
|
|
|
## DependencyMatcher.\_\_init\_\_ {#init tag="method"}
|
|
|
|
Create a rule-based `DependencyMatcher`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.matcher import DependencyMatcher
|
|
> matcher = DependencyMatcher(nlp.vocab)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ------- | ----------------------------------------------------------------------------------------------------- |
|
|
| `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ |
|
|
|
|
## DependencyMatcher.\_\call\_\_ {#call tag="method"}
|
|
|
|
Find all token sequences matching the supplied patterns on the `Doc` or `Span`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.matcher import DependencyMatcher
|
|
>
|
|
> matcher = DependencyMatcher(nlp.vocab)
|
|
> pattern = [
|
|
> {"SPEC": {"NODE_NAME": "founded"}, "PATTERN": {"ORTH": "founded"}},
|
|
> {"SPEC": {"NODE_NAME": "founder", "NBOR_RELOP": ">", "NBOR_NAME": "founded"}, "PATTERN": {"DEP": "nsubj"}},
|
|
> ]
|
|
> matcher.add("Founder", [pattern])
|
|
> doc = nlp("Bill Gates founded Microsoft.")
|
|
> matches = matcher(doc)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
|
|
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. ~~List[Tuple[int, int, int]]~~ |
|
|
|
|
## DependencyMatcher.\_\_len\_\_ {#len tag="method"}
|
|
|
|
Get the number of rules (edges) added to the dependency matcher. Note that this
|
|
only returns the number of rules (identical with the number of IDs), not the
|
|
number of individual patterns.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> matcher = DependencyMatcher(nlp.vocab)
|
|
> assert len(matcher) == 0
|
|
> pattern = [
|
|
> {"SPEC": {"NODE_NAME": "founded"}, "PATTERN": {"ORTH": "founded"}},
|
|
> {"SPEC": {"NODE_NAME": "START_ENTITY", "NBOR_RELOP": ">", "NBOR_NAME": "founded"}, "PATTERN": {"DEP": "nsubj"}},
|
|
> ]
|
|
> matcher.add("Rule", [pattern])
|
|
> assert len(matcher) == 1
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | ---------------------------- |
|
|
| **RETURNS** | The number of rules. ~~int~~ |
|
|
|
|
## DependencyMatcher.\_\_contains\_\_ {#contains tag="method"}
|
|
|
|
Check whether the matcher contains rules for a match ID.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> matcher = Matcher(nlp.vocab)
|
|
> assert "Rule" not in matcher
|
|
> matcher.add("Rule", [pattern])
|
|
> assert "Rule" in matcher
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | -------------------------------------------------------------- |
|
|
| `key` | The match ID. ~~str~~ |
|
|
| **RETURNS** | Whether the matcher contains rules for this match ID. ~~bool~~ |
|
|
|
|
## DependencyMatcher.add {#add tag="method"}
|
|
|
|
Add a rule to the matcher, consisting of an ID key, one or more patterns, and an
|
|
optional callback function to act on the matches. The callback function will
|
|
receive the arguments `matcher`, `doc`, `i` and `matches`. If a pattern already
|
|
exists for the given ID, the patterns will be extended. An `on_match` callback
|
|
will be overwritten.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> def on_match(matcher, doc, id, matches):
|
|
> print('Matched!', matches)
|
|
>
|
|
> matcher = DependencyMatcher(nlp.vocab)
|
|
> matcher.add("TEST_PATTERNS", patterns)
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
| `match_id` | An ID for the thing you're matching. ~~str~~ |
|
|
| `patterns` | list | Match pattern. A pattern consists of a list of dicts, where each dict describes a `"PATTERN"` and `"SPEC"`. ~~List[List[Dict[str, dict]]]~~ |
|
|
| _keyword-only_ | | |
|
|
| `on_match` | Callback function to act on matches. Takes the arguments `matcher`, `doc`, `i` and `matches`. ~~Optional[Callable[[Matcher, Doc, int, List[tuple], Any]]~~ |
|
|
|
|
## DependencyMatcher.remove {#remove tag="method"}
|
|
|
|
Remove a rule from the matcher. A `KeyError` is raised if the match ID does not
|
|
exist.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> matcher.add("Rule", [pattern]])
|
|
> assert "Rule" in matcher
|
|
> matcher.remove("Rule")
|
|
> assert "Rule" not in matcher
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----- | --------------------------------- |
|
|
| `key` | The ID of the match rule. ~~str~~ |
|
|
|
|
## DependencyMatcher.get {#get tag="method"}
|
|
|
|
Retrieve the pattern stored for a key. Returns the rule as an
|
|
`(on_match, patterns)` tuple containing the callback and available patterns.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> matcher.add("Rule", [pattern], on_match=on_match)
|
|
> on_match, patterns = matcher.get("Rule")
|
|
> ```
|
|
|
|
| Name | Description |
|
|
| ----------- | --------------------------------------------------------------------------------------------- |
|
|
| `key` | The ID of the match rule. ~~str~~ |
|
|
| **RETURNS** | The rule, as an `(on_match, patterns)` tuple. ~~Tuple[Optional[Callable], List[List[dict]]]~~ |
|