31 KiB
title | next | menu | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Adding Languages | /usage/training |
|
Adding full support for a language touches many different parts of the spaCy library. This guide explains how to fit everything together, and points you to the specific workflows for each component.
Working on spaCy's source
To add a new language to spaCy, you'll need to modify the library's code. The easiest way to do this is to clone the repository and build spaCy from source. For more information on this, see the installation guide. Unlike spaCy's core, which is mostly written in Cython, all language data is stored in regular Python files. This means that you won't have to rebuild anything in between – you can simply make edits and reload spaCy to test them.
Obviously, there are lots of ways you can organize your code when you implement
your own language data. This guide will focus on how it's done within spaCy. For
full language support, you'll need to create a Language
subclass, define
custom language data, like a stop list and tokenizer exceptions and test the
new tokenizer. Once the language is set up, you can build the vocabulary,
including word frequencies, Brown clusters and word vectors. Finally, you can
train the tagger and parser, and save the model to a directory.
For some languages, you may also want to develop a solution for lemmatization and morphological analysis.
- Language data 101
- The Language subclass
- Stop words
- Tokenizer exceptions
- Norm exceptions
- Lexical attributes
- Syntax iterators
- Lemmatizer
- Tag map
- Morph rules
- Testing the language
- Training
Language data
import LanguageData101 from 'usage/101/_language-data.md'
The individual components expose variables that can be imported within a
language module, and added to the language's Defaults
. Some components, like
the punctuation rules, usually don't need much customization and can be imported
from the global rules. Others, like the tokenizer and norm exceptions, are very
specific and will make a big difference to spaCy's performance on the particular
language and training a language model.
Variable | Type | Description |
---|---|---|
STOP_WORDS |
set | Individual words. |
TOKENIZER_EXCEPTIONS |
dict | Keyed by strings mapped to list of one dict per token with token attributes. |
TOKEN_MATCH |
regex | Regexes to match complex tokens, e.g. URLs. |
NORM_EXCEPTIONS |
dict | Keyed by strings, mapped to their norms. |
TOKENIZER_PREFIXES |
list | Strings or regexes, usually not customized. |
TOKENIZER_SUFFIXES |
list | Strings or regexes, usually not customized. |
TOKENIZER_INFIXES |
list | Strings or regexes, usually not customized. |
LEX_ATTRS |
dict | Attribute ID mapped to function. |
SYNTAX_ITERATORS |
dict | Iterator ID mapped to function. Currently only supports 'noun_chunks' . |
LOOKUP |
dict | Keyed by strings mapping to their lemma. |
LEMMA_RULES , LEMMA_INDEX , LEMMA_EXC |
dict | Lemmatization rules, keyed by part of speech. |
TAG_MAP |
dict | Keyed by strings mapped to Universal Dependencies tags. |
MORPH_RULES |
dict | Keyed by strings mapped to a dict of their morphological features. |
Should I ever update the global data?
Reusable language data is collected as atomic pieces in the root of the
spacy.lang
module. Often, when a new language is added, you'll find a pattern or symbol that's missing. Even if it isn't common in other languages, it might be best to add it to the shared language data, unless it has some conflicting interpretation. For instance, we don't expect to see guillemot quotation symbols (»
and«
) in English text. But if we do see them, we'd probably prefer the tokenizer to split them off.
In order for the tokenizer to split suffixes, prefixes and infixes, spaCy needs
to know the language's character set. If the language you're adding uses
non-latin characters, you might need to define the required character classes in
the global
char_classes.py
.
For efficiency, spaCy uses hard-coded unicode ranges to define character
classes, the definitions of which can be found on
Wikipedia. If the language
requires very specific punctuation rules, you should consider overwriting the
default regular expressions with your own in the language's Defaults
.
Creating a Language
subclass
Language-specific code and resources should be organized into a sub-package of
spaCy, named according to the language's
ISO code. For instance,
code and resources specific to Spanish are placed into a directory
spacy/lang/es
, which can be imported as spacy.lang.es
.
To get started, you can use our templates for the most important files. Here's what the class template looks like:
### __init__.py (excerpt)
# import language-specific data
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .lex_attrs import LEX_ATTRS
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...language import Language
from ...attrs import LANG
from ...util import update_exc
# Create Defaults class in the module scope (necessary for pickling!)
class XxxxxDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: "xx" # language ISO code
# Optional: replace flags with custom functions, e.g. like_num()
lex_attr_getters.update(LEX_ATTRS)
# Merge base exceptions and custom tokenizer exceptions
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
stop_words = STOP_WORDS
# Create actual Language class
class Xxxxx(Language):
lang = "xx" # Language ISO code
Defaults = XxxxxDefaults # Override defaults
# Set default export – this allows the language class to be lazy-loaded
__all__ = ["Xxxxx"]
Some languages contain large volumes of custom data, like lemmatizer lookup
tables, or complex regular expression that are expensive to compute. As of spaCy
v2.0, Language
classes are not imported on initialization and are only loaded
when you import them directly, or load a model that requires a language to be
loaded. To lazy-load languages in your application, you can use the
util.get_lang_class
helper function with
the two-letter language code as its argument.
Stop words
A "stop list" is a classic trick
from the early days of information retrieval when search was largely about
keyword presence and absence. It is still sometimes useful today to filter out
common words from a bag-of-words model. To improve readability, STOP_WORDS
are
separated by spaces and newlines, and added as a multiline string.
What does spaCy consider a stop word?
There's no particularly principled logic behind what words should be added to the stop list. Make a list that you think might be useful to people and is likely to be unsurprising. As a rule of thumb, words that are very rare are unlikely to be useful stop words.
### Example
STOP_WORDS = set("""
a about above across after afterwards again against all almost alone along
already also although always am among amongst amount an and another any anyhow
anyone anything anyway anywhere are around as at
back be became because become becomes becoming been before beforehand behind
being below beside besides between beyond both bottom but by
""".split())
When adding stop words from an online source, always include the link in a comment. Make sure to proofread and double-check the words carefully. A lot of the lists available online have been passed around for years and often contain mistakes, like unicode errors or random words that have once been added for a specific use case, but don't actually qualify.
Tokenizer exceptions
spaCy's tokenization algorithm
lets you deal with whitespace-delimited chunks separately. This makes it easy to
define special-case rules, without worrying about how they interact with the
rest of the tokenizer. Whenever the key string is matched, the special-case rule
is applied, giving the defined sequence of tokens. You can also attach
attributes to the subtokens, covered by your special case, such as the subtokens
LEMMA
or TAG
.
Tokenizer exceptions can be added in the following format:
### tokenizer_exceptions.py (excerpt)
TOKENIZER_EXCEPTIONS = {
"don't": [
{ORTH: "do", LEMMA: "do"},
{ORTH: "n't", LEMMA: "not", NORM: "not", TAG: "RB"}]
}
If an exception consists of more than one token, the ORTH
values combined
always need to match the original string. The way the original string is
split up can be pretty arbitrary sometimes – for example "gonna"
is split into
"gon"
(lemma "go") and "na"
(lemma "to"). Because of how the tokenizer
works, it's currently not possible to split single-letter strings into multiple
tokens.
Unambiguous abbreviations, like month names or locations in English, should be
added to exceptions with a lemma assigned, for example
{ORTH: "Jan.", LEMMA: "January"}
. Since the exceptions are added in Python,
you can use custom logic to generate them more efficiently and make your data
less verbose. How you do this ultimately depends on the language. Here's an
example of how exceptions for time formats like "1a.m." and "1am" are generated
in the English
tokenizer_exceptions.py
:
### tokenizer_exceptions.py (excerpt)
# use short, internal variable for readability
_exc = {}
for h in range(1, 12 + 1):
for period in ["a.m.", "am"]:
# always keep an eye on string interpolation!
_exc["%d%s" % (h, period)] = [
{ORTH: "%d" % h},
{ORTH: period, LEMMA: "a.m."}]
for period in ["p.m.", "pm"]:
_exc["%d%s" % (h, period)] = [
{ORTH: "%d" % h},
{ORTH: period, LEMMA: "p.m."}]
# only declare this at the bottom
TOKENIZER_EXCEPTIONS = _exc
Generating tokenizer exceptions
Keep in mind that generating exceptions only makes sense if there's a clearly defined and finite number of them, like common contractions in English. This is not always the case – in Spanish for instance, infinitive or imperative reflexive verbs and pronouns are one token (e.g. "vestirme"). In cases like this, spaCy shouldn't be generating exceptions for all verbs. Instead, this will be handled at a later stage during lemmatization.
When adding the tokenizer exceptions to the Defaults
, you can use the
update_exc
helper function to merge them
with the global base exceptions (including one-letter abbreviations and
emoticons). The function performs a basic check to make sure exceptions are
provided in the correct format. It can take any number of exceptions dicts as
its arguments, and will update and overwrite the exception in this order. For
example, if your language's tokenizer exceptions include a custom tokenization
pattern for "a.", it will overwrite the base exceptions with the language's
custom one.
### Example
from ...util import update_exc
BASE_EXCEPTIONS = {"a.": [{ORTH: "a."}], ":)": [{ORTH: ":)"}]}
TOKENIZER_EXCEPTIONS = {"a.": [{ORTH: "a.", LEMMA: "all"}]}
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
# {"a.": [{ORTH: "a.", LEMMA: "all"}], ":)": [{ORTH: ":)"}]}
Unlike verbs and common nouns, there's no clear base form of a personal pronoun.
Should the lemma of "me" be "I", or should we normalize person as well, giving
"it" — or maybe "he"? spaCy's solution is to introduce a novel symbol, -PRON-
,
which is used as the lemma for all personal pronouns.
Norm exceptions
In addition to ORTH
or LEMMA
, tokenizer exceptions can also set a NORM
attribute. This is useful to specify a normalized version of the token – for
example, the norm of "n't" is "not". By default, a token's norm equals its
lowercase text. If the lowercase spelling of a word exists, norms should always
be in lowercase.
Norms vs. lemmas
doc = nlp(u"I'm gonna realise") norms = [token.norm_ for token in doc] lemmas = [token.lemma_ for token in doc] assert norms == ["i", "am", "going", "to", "realize"] assert lemmas == ["i", "be", "go", "to", "realise"]
spaCy usually tries to normalize words with different spellings to a single, common spelling. This has no effect on any other token attributes, or tokenization in general, but it ensures that equivalent tokens receive similar representations. This can improve the model's predictions on words that weren't common in the training data, but are equivalent to other words – for example, "realize" and "realize", or "thx" and "thanks".
Similarly, spaCy also includes
global base norms
for normalizing different styles of quotation marks and currency symbols. Even
though $
and €
are very different, spaCy normalizes them both to $
. This
way, they'll always be seen as similar, no matter how common they were in the
training data.
Norm exceptions can be provided as a simple dictionary. For more examples, see
the English
norm_exceptions.py
.
### Example
NORM_EXCEPTIONS = {
"cos": "because",
"fav": "favorite",
"accessorise": "accessorize",
"accessorised": "accessorized"
}
To add the custom norm exceptions lookup table, you can use the add_lookups()
helper functions. It takes the default attribute getter function as its first
argument, plus a variable list of dictionaries. If a string's norm is found in
one of the dictionaries, that value is used – otherwise, the default function is
called and the token is assigned its default norm.
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM],
NORM_EXCEPTIONS, BASE_NORMS)
The order of the dictionaries is also the lookup order – so if your language's norm exceptions overwrite any of the global exceptions, they should be added first. Also note that the tokenizer exceptions will always have priority over the attribute getters.
Lexical attributes
spaCy provides a range of Token
attributes that
return useful information on that token – for example, whether it's uppercase or
lowercase, a left or right punctuation mark, or whether it resembles a number or
email address. Most of these functions, like is_lower
or like_url
should be
language-independent. Others, like like_num
(which includes both digits and
number words), requires some customization.
Best practices
Keep in mind that those functions are only intended to be an approximation. It's always better to prioritize simplicity and performance over covering very specific edge cases.
English number words are pretty simple, because even large numbers consist of individual tokens, and we can get away with splitting and matching strings against a list. In other languages, like German, "two hundred and thirty-four" is one word, and thus one token. Here, it's best to match a string against a list of number word fragments (instead of a technically almost infinite list of possible number words).
Here's an example from the English
lex_attrs.py
:
### lex_attrs.py
_num_words = ["zero", "one", "two", "three", "four", "five", "six", "seven",
"eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen",
"fifteen", "sixteen", "seventeen", "eighteen", "nineteen", "twenty",
"thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety",
"hundred", "thousand", "million", "billion", "trillion", "quadrillion",
"gajillion", "bazillion"]
def like_num(text):
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if text.lower() in _num_words:
return True
return False
LEX_ATTRS = {
LIKE_NUM: like_num
}
By updating the default lexical attributes with a custom LEX_ATTRS
dictionary
in the language's defaults via lex_attr_getters.update(LEX_ATTRS)
, only the
new custom functions are overwritten.
Syntax iterators
Syntax iterators are functions that compute views of a Doc
object based on its
syntax. At the moment, this data is only used for extracting
noun chunks, which are available as
the Doc.noun_chunks
property. Because base noun
phrases work differently across languages, the rules to compute them are part of
the individual language's data. If a language does not include a noun chunks
iterator, the property won't be available. For examples, see the existing syntax
iterators:
Noun chunks example
doc = nlp(u"A phrase with another phrase occurs.") chunks = list(doc.noun_chunks) assert chunks[0].text == u"A phrase" assert chunks[1].text == u"another phrase"
Language | Code | Source |
---|---|---|
English | en |
lang/en/syntax_iterators.py |
German | de |
lang/de/syntax_iterators.py |
French | fr |
lang/fr/syntax_iterators.py |
Spanish | es |
lang/es/syntax_iterators.py |
Lemmatizer
As of v2.0, spaCy supports simple lookup-based lemmatization. This is usually the quickest and easiest way to get started. The data is stored in a dictionary mapping a string to its lemma. To determine a token's lemma, spaCy simply looks it up in the table. Here's an example from the Spanish language data:
### lang/es/lemmatizer.py (excerpt)
LOOKUP = {
"aba": "abar",
"ababa": "abar",
"ababais": "abar",
"ababan": "abar",
"ababanes": "ababán",
"ababas": "abar",
"ababoles": "ababol",
"ababábites": "ababábite"
}
To provide a lookup lemmatizer for your language, import the lookup table and
add it to the Language
class as lemma_lookup
:
lemma_lookup = LOOKUP
Tag map
Most treebanks define a custom part-of-speech tag scheme, striking a balance between level of detail and ease of prediction. While it's useful to have custom tagging schemes, it's also useful to have a common scheme, to which the more specific tags can be related. The tagger can learn a tag scheme with any arbitrary symbols. However, you need to define how those symbols map down to the Universal Dependencies tag set. This is done by providing a tag map.
The keys of the tag map should be strings in your tag set. The values should be a dictionary. The dictionary must have an entry POS whose value is one of the Universal Dependencies tags. Optionally, you can also include morphological features or other token attributes in the tag map as well. This allows you to do simple rule-based morphological analysis.
### Example
from ..symbols import POS, NOUN, VERB, DET
TAG_MAP = {
"NNS": {POS: NOUN, "Number": "plur"},
"VBG": {POS: VERB, "VerbForm": "part", "Tense": "pres", "Aspect": "prog"},
"DT": {POS: DET}
}
Morph rules
The morphology rules let you set token attributes such as lemmas, keyed by the extended part-of-speech tag and token text. The morphological features and their possible values are language-specific and based on the Universal Dependencies scheme.
### Example
from ..symbols import LEMMA
MORPH_RULES = {
"VBZ": {
"am": {LEMMA: "be", "VerbForm": "Fin", "Person": "One", "Tense": "Pres", "Mood": "Ind"},
"are": {LEMMA: "be", "VerbForm": "Fin", "Person": "Two", "Tense": "Pres", "Mood": "Ind"},
"is": {LEMMA: "be", "VerbForm": "Fin", "Person": "Three", "Tense": "Pres", "Mood": "Ind"},
"'re": {LEMMA: "be", "VerbForm": "Fin", "Person": "Two", "Tense": "Pres", "Mood": "Ind"},
"'s": {LEMMA: "be", "VerbForm": "Fin", "Person": "Three", "Tense": "Pres", "Mood": "Ind"}
}
}
In the example of "am"
, the attributes look like this:
Attribute | Description |
---|---|
LEMMA: "be" |
Base form, e.g. "to be". |
"VerbForm": "Fin" |
Finite verb. Finite verbs have a subject and can be the root of an independent clause – "I am." is a valid, complete sentence. |
"Person": "One" |
First person, i.e. "I am". |
"Tense": "Pres" |
Present tense, i.e. actions that are happening right now or actions that usually happen. |
"Mood": "Ind" |
Indicative, i.e. something happens, has happened or will happen (as opposed to imperative or conditional). |
The morphological attributes are currently not all used by spaCy. Full integration is still being developed. In the meantime, it can still be useful to add them, especially if the language you're adding includes important distinctions and special cases. This ensures that as soon as full support is introduced, your language will be able to assign all possible attributes.
Testing the new language
Before using the new language or submitting a pull request to spaCy, you should make sure it works as expected. This is especially important if you've added custom regular expressions for token matching or punctuation – you don't want to be causing regressions.
spaCy uses the pytest framework for testing. For more details on how the tests are structured and best practices for writing your own tests, see our tests documentation.
Writing language-specific tests
It's recommended to always add at least some tests with examples specific to the
language. Language tests should be located in
tests/lang
in a directory named after the language ID. You'll also need to create a fixture
for your tokenizer in the
conftest.py
.
Always use the get_lang_class
helper
function within the fixture, instead of importing the class at the top of the
file. This will load the language data only when it's needed. (Otherwise, all
data would be loaded every time you run a test.)
@pytest.fixture
def en_tokenizer():
return util.get_lang_class("en").Defaults.create_tokenizer()
When adding test cases, always
parametrize
them – this will make it easier for others to add more test cases without having
to modify the test itself. You can also add parameter tuples, for example, a
test sentence and its expected length, or a list of expected tokens. Here's an
example of an English tokenizer test for combinations of punctuation and
abbreviations:
### Example test
@pytest.mark.parametrize('text,length', [
("The U.S. Army likes Shock and Awe.", 8),
("U.N. regulations are not a part of their concern.", 10),
("“Isn't it?”", 6)])
def test_en_tokenizer_handles_punct_abbrev(en_tokenizer, text, length):
tokens = en_tokenizer(text)
assert len(tokens) == length
Training a language model
Much of spaCy's functionality requires models to be trained from labeled data. For instance, in order to use the named entity recognizer, you need to first train a model on text annotated with examples of the entities you want to recognize. The parser, part-of-speech tagger and text categorizer all also require models to be trained from labeled examples. The word vectors, word probabilities and word clusters also require training, although these can be trained from unlabeled text, which tends to be much easier to collect.
Creating a vocabulary file
spaCy expects that common words will be cached in a Vocab
instance. The vocabulary caches lexical features. spaCy loads the vocabulary
from binary data, in order to keep loading efficient. The easiest way to save
out a new binary vocabulary file is to use the spacy init-model
command, which
expects a JSONL file with words and their lexical attributes. See the docs on
the vocab JSONL format for details.
Training the word vectors
Word2vec and related algorithms let
you train useful word similarity models from unlabeled text. This is a key part
of using deep learning for NLP with limited labeled data. The vectors are also
useful by themselves – they power the .similarity
methods in spaCy. For best
results, you should pre-process the text with spaCy before training the Word2vec
model. This ensures your tokenization will match. You can use our
word vectors training script,
which pre-processes the text with your language-specific tokenizer and trains
the model using Gensim. The vectors.bin
file should consist of one word and vector per line.
https://github.com/explosion/spacy-dev-resources/tree/master/training/word_vectors.py
If you don't have a large sample of text available, you can also convert word vectors produced by a variety of other tools into spaCy's format. See the docs on converting word vectors for details.
Creating or converting a training corpus
The easiest way to train spaCy's tagger, parser, entity recognizer or text
categorizer is to use the spacy train
command-line utility.
In order to use this, you'll need training and evaluation data in the
JSON format spaCy expects for training.
You can now train the model using a corpus for your language annotated with If
your data is in one of the supported formats, the easiest solution might be to
use the spacy convert
command-line utility. This supports
several popular formats, including the IOB format for named entity recognition,
the JSONL format produced by our annotation tool Prodigy,
and the CoNLL-U format used
by the Universal Dependencies corpus.
One thing to keep in mind is that spaCy expects to train its models from whole
documents, not just single sentences. If your corpus only contains single
sentences, spaCy's models will never learn to expect multi-sentence documents,
leading to low performance on real text. To mitigate this problem, you can use
the -N
argument to the spacy convert
command, to merge some of the sentences
into longer pseudo-documents.
Training the tagger and parser
Once you have your training and evaluation data in the format spaCy expects, you
can train your model use the using spaCy's train
command.
Note that training statistical models still involves a degree of
trial-and-error. You may need to tune one or more settings, also called
"hyper-parameters", to achieve optimal performance. See the
usage guide on training for more details.