spaCy/website/docs/api/entityruler.md

212 lines
8.7 KiB
Markdown

---
title: EntityRuler
tag: class
source: spacy/pipeline/entityruler.py
new: 2.1
---
The EntityRuler lets you add spans to the [`Doc.ents`](/api/doc#ents) using
token-based rules or exact phrase matches. It can be combined with the
statistical [`EntityRecognizer`](/api/entityrecognizer) to boost accuracy, or
used on its own to implement a purely rule-based entity recognition system.
After initialization, the component is typically added to the processing
pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
## EntityRuler.\_\_init\_\_ {#init tag="method"}
Initialize the entity ruler. If patterns are supplied here, they need to be a
list of dictionaries with a `"label"` and `"pattern"` key. A pattern can either
be a token pattern (list) or a phrase pattern (string). For example:
`{'label': 'ORG', 'pattern': 'Apple'}`.
> #### Example
>
> ```python
> # Construction via create_pipe
> ruler = nlp.create_pipe("entityruler")
>
> # Construction from class
> from spacy.pipeline import EntityRuler
> ruler = EntityRuler(nlp, overwrite_ents=True)
> ```
| Name | Type | Description |
| ---------------- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
| `nlp` | `Language` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. |
| `patterns` | iterable | Optional patterns to load in. |
| `phrase_matcher_attr` | int / unicode | Optional attr to pass to the internal [`PhraseMatcher`](/api/phtasematcher). defaults to `None`
| `overwrite_ents` | bool | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`. |
| `**cfg` | - | Other config parameters. If pipeline component is loaded as part of a model pipeline, this will include all keyword arguments passed to `spacy.load`. |
| **RETURNS** | `EntityRuler` | The newly constructed object. |
## EntityRuler.\_\len\_\_ {#len tag="method"}
The number of all patterns added to the entity ruler.
> #### Example
>
> ```python
> ruler = EntityRuler(nlp)
> assert len(ruler) == 0
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
> assert len(ruler) == 1
> ```
| Name | Type | Description |
| ----------- | ---- | ----------------------- |
| **RETURNS** | int | The number of patterns. |
## EntityRuler.\_\_contains\_\_ {#contains tag="method"}
Whether a label is present in the patterns.
> #### Example
>
> ```python
> ruler = EntityRuler(nlp)
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
> assert "ORG" in ruler
> assert not "PERSON" in ruler
> ```
| Name | Type | Description |
| ----------- | ------- | -------------------------------------------- |
| `label` | unicode | The label to check. |
| **RETURNS** | bool | Whether the entity ruler contains the label. |
## EntityRuler.\_\_call\_\_ {#call tag="method"}
Find matches in the `Doc` and add them to the `doc.ents`. Typically, this
happens automatically after the component has been added to the pipeline using
[`nlp.add_pipe`](/api/language#add_pipe). If the entity ruler was initialized
with `overwrite_ents=True`, existing entities will be replaced if they overlap
with the matches.
> #### Example
>
> ```python
> ruler = EntityRuler(nlp)
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
> nlp.add_pipe(ruler)
>
> doc = nlp("A text about Apple.")
> ents = [(ent.text, ent.label_) for ent in doc.ents]
> assert ents == [("Apple", "ORG")]
> ```
| Name | Type | Description |
| ----------- | ----- | ------------------------------------------------------------ |
| `doc` | `Doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. |
| **RETURNS** | `Doc` | The modified `Doc` with added entities, if available. |
## EntityRuler.add_patterns {#add_patterns tag="method"}
Add patterns to the entity ruler. A pattern can either be a token pattern (list
of dicts) or a phrase pattern (string). For more details, see the usage guide on
[rule-based matching](/usage/rule-based-matching).
> #### Example
>
> ```python
> patterns = [
> {"label": "ORG", "pattern": "Apple"},
> {"label": "GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]}
> ]
> ruler = EntityRuler(nlp)
> ruler.add_patterns(patterns)
> ```
| Name | Type | Description |
| ---------- | ---- | -------------------- |
| `patterns` | list | The patterns to add. |
## EntityRuler.to_disk {#to_disk tag="method"}
Save the entity ruler patterns to a directory. The patterns will be saved as
newline-delimited JSON (JSONL).
> #### Example
>
> ```python
> ruler = EntityRuler(nlp)
> ruler.to_disk("/path/to/rules.jsonl")
> ```
| Name | Type | Description |
| ------ | ---------------- | ---------------------------------------------------------------------------------------------------------------- |
| `path` | unicode / `Path` | A path to a file, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
## EntityRuler.from_disk {#from_disk tag="method"}
Load the entity ruler from a file. Expects a file containing newline-delimited
JSON (JSONL) with one entry per line.
> #### Example
>
> ```python
> ruler = EntityRuler(nlp)
> ruler.from_disk("/path/to/rules.jsonl")
> ```
| Name | Type | Description |
| ----------- | ---------------- | --------------------------------------------------------------------------- |
| `path` | unicode / `Path` | A path to a JSONL file. Paths may be either strings or `Path`-like objects. |
| **RETURNS** | `EntityRuler` | The modified `EntityRuler` object. |
## EntityRuler.to_bytes {#to_bytes tag="method"}
Serialize the entity ruler patterns to a bytestring.
> #### Example
>
> ```python
> ruler = EntityRuler(nlp)
> ruler_bytes = ruler.to_bytes()
> ```
| Name | Type | Description |
| ----------- | ----- | ------------------------ |
| **RETURNS** | bytes | The serialized patterns. |
## EntityRuler.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> ruler_bytes = ruler.to_bytes()
> ruler = EntityRuler(nlp)
> ruler.from_bytes(ruler_bytes)
> ```
| Name | Type | Description |
| ---------------- | ------------- | ---------------------------------- |
| `patterns_bytes` | bytes | The bytestring to load. |
| **RETURNS** | `EntityRuler` | The modified `EntityRuler` object. |
## EntityRuler.labels {#labels tag="property"}
All labels present in the match patterns.
| Name | Type | Description |
| ----------- | ----- | ------------------ |
| **RETURNS** | tuple | The string labels. |
## EntityRuler.patterns {#patterns tag="property"}
Get all patterns that were added to the entity ruler.
| Name | Type | Description |
| ----------- | ---- | -------------------------------------------------- |
| **RETURNS** | list | The original patterns, one dictionary per pattern. |
## Attributes {#attributes}
| Name | Type | Description |
| ----------------- | ------------------------------------- | ---------------------------------------------------------------- |
| `matcher` | [`Matcher`](/api/matcher) | The underlying matcher used to process token patterns. |
| `phrase_matcher` | [`PhraseMatcher`](/api/phtasematcher) | The underlying phrase matcher, used to process phrase patterns. |
| `token_patterns` | dict | The token patterns present in the entity ruler, keyed by label. |
| `phrase_patterns` | dict | The phrase patterns present in the entity ruler, keyed by label. |