spaCy/spacy/tests/doc/test_doc_spilt.py

121 lines
3.7 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import pytest
from spacy.vocab import Vocab
from spacy.tokens import Doc
from ..util import get_doc
def test_doc_split(en_tokenizer):
text = "LosAngeles start."
heads = [1, 1, 0]
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
assert len(doc) == 3
assert len(str(doc)) == 19
assert doc[0].head.text == "start"
assert doc[1].head.text == "."
with doc.retokenize() as retokenizer:
retokenizer.split(
doc[0],
["Los", "Angeles"],
[1, 0],
attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
)
assert len(doc) == 4
assert doc[0].text == "Los"
assert doc[0].head.text == "Angeles"
assert doc[0].idx == 0
assert doc[1].idx == 3
assert doc[1].text == "Angeles"
assert doc[1].head.text == "start"
assert doc[2].text == "start"
assert doc[2].head.text == "."
assert doc[3].text == "."
assert doc[3].head.text == "."
assert len(str(doc)) == 19
def test_split_dependencies(en_tokenizer):
text = "LosAngeles start."
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens])
dep1 = doc.vocab.strings.add("amod")
dep2 = doc.vocab.strings.add("subject")
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 0], [dep1, dep2])
assert doc[0].dep == dep1
assert doc[1].dep == dep2
def test_split_heads_error(en_tokenizer):
text = "LosAngeles start."
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens])
# Not enough heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [0])
# Too many heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 1, 0])
# No token head
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 1])
# Several token heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [0, 0])
def test_spans_entity_merge_iob():
# Test entity IOB stays consistent after merging
words = ["abc", "d", "e"]
doc = Doc(Vocab(), words=words)
doc.ents = [(doc.vocab.strings.add("ent-abcd"), 0, 2)]
assert doc[0].ent_iob_ == "B"
assert doc[1].ent_iob_ == "I"
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["a", "b", "c"], [1, 1, 0])
assert doc[0].ent_iob_ == "B"
assert doc[1].ent_iob_ == "I"
assert doc[2].ent_iob_ == "I"
assert doc[3].ent_iob_ == "I"
def test_spans_sentence_update_after_merge(en_tokenizer):
# fmt: off
text = "StewartLee is a stand up comedian. He lives in England and loves JoePasquale."
heads = [1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2]
deps = ["nsubj", "ROOT", "det", "amod", "prt", "attr", "punct", "nsubj",
"ROOT", "prep", "pobj", "cc", "conj", "compound", "punct"]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
sent1, sent2 = list(doc.sents)
init_len = len(sent1)
init_len2 = len(sent2)
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Stewart", "Lee"], [1, 0])
retokenizer.split(doc[14], ["Joe", "Pasquale"], [1, 0])
sent1, sent2 = list(doc.sents)
assert len(sent1) == init_len + 1
assert len(sent2) == init_len2 + 1