2019-02-14 14:27:13 +00:00
|
|
|
# coding: utf-8
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
|
|
|
import pytest
|
2019-02-14 18:56:38 +00:00
|
|
|
from spacy.vocab import Vocab
|
|
|
|
from spacy.tokens import Doc
|
|
|
|
|
|
|
|
from ..util import get_doc
|
2019-02-14 14:27:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_doc_split(en_tokenizer):
|
|
|
|
text = "LosAngeles start."
|
|
|
|
heads = [1, 1, 0]
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
|
|
|
|
|
|
|
assert len(doc) == 3
|
|
|
|
assert len(str(doc)) == 19
|
2019-02-14 18:56:38 +00:00
|
|
|
assert doc[0].head.text == "start"
|
|
|
|
assert doc[1].head.text == "."
|
2019-02-14 14:27:13 +00:00
|
|
|
|
|
|
|
with doc.retokenize() as retokenizer:
|
2019-02-14 18:56:38 +00:00
|
|
|
retokenizer.split(
|
|
|
|
doc[0],
|
|
|
|
["Los", "Angeles"],
|
|
|
|
[1, 0],
|
|
|
|
attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
|
|
|
|
)
|
2019-02-14 14:27:13 +00:00
|
|
|
|
|
|
|
assert len(doc) == 4
|
2019-02-14 18:56:38 +00:00
|
|
|
assert doc[0].text == "Los"
|
|
|
|
assert doc[0].head.text == "Angeles"
|
2019-02-14 14:27:13 +00:00
|
|
|
assert doc[0].idx == 0
|
|
|
|
assert doc[1].idx == 3
|
|
|
|
|
2019-02-14 18:56:38 +00:00
|
|
|
assert doc[1].text == "Angeles"
|
|
|
|
assert doc[1].head.text == "start"
|
2019-02-14 14:27:13 +00:00
|
|
|
|
2019-02-14 18:56:38 +00:00
|
|
|
assert doc[2].text == "start"
|
|
|
|
assert doc[2].head.text == "."
|
2019-02-14 14:27:13 +00:00
|
|
|
|
2019-02-14 18:56:38 +00:00
|
|
|
assert doc[3].text == "."
|
|
|
|
assert doc[3].head.text == "."
|
2019-02-14 14:27:13 +00:00
|
|
|
|
|
|
|
assert len(str(doc)) == 19
|
|
|
|
|
2019-02-14 18:56:38 +00:00
|
|
|
|
2019-02-14 14:27:13 +00:00
|
|
|
def test_split_dependencies(en_tokenizer):
|
|
|
|
text = "LosAngeles start."
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens])
|
2019-02-14 18:56:38 +00:00
|
|
|
dep1 = doc.vocab.strings.add("amod")
|
|
|
|
dep2 = doc.vocab.strings.add("subject")
|
2019-02-14 14:27:13 +00:00
|
|
|
with doc.retokenize() as retokenizer:
|
|
|
|
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 0], [dep1, dep2])
|
|
|
|
|
|
|
|
assert doc[0].dep == dep1
|
|
|
|
assert doc[1].dep == dep2
|
|
|
|
|
|
|
|
|
|
|
|
def test_split_heads_error(en_tokenizer):
|
|
|
|
text = "LosAngeles start."
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens])
|
2019-02-14 18:56:38 +00:00
|
|
|
# Not enough heads
|
2019-02-14 14:27:13 +00:00
|
|
|
with pytest.raises(ValueError):
|
|
|
|
with doc.retokenize() as retokenizer:
|
|
|
|
retokenizer.split(doc[0], ["Los", "Angeles"], [0])
|
|
|
|
|
2019-02-14 18:56:38 +00:00
|
|
|
# Too many heads
|
2019-02-14 14:27:13 +00:00
|
|
|
with pytest.raises(ValueError):
|
|
|
|
with doc.retokenize() as retokenizer:
|
|
|
|
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 1, 0])
|
|
|
|
|
2019-02-14 18:56:38 +00:00
|
|
|
# No token head
|
2019-02-14 14:27:13 +00:00
|
|
|
with pytest.raises(ValueError):
|
|
|
|
with doc.retokenize() as retokenizer:
|
|
|
|
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 1])
|
|
|
|
|
2019-02-14 18:56:38 +00:00
|
|
|
# Several token heads
|
2019-02-14 14:27:13 +00:00
|
|
|
with pytest.raises(ValueError):
|
|
|
|
with doc.retokenize() as retokenizer:
|
|
|
|
retokenizer.split(doc[0], ["Los", "Angeles"], [0, 0])
|
|
|
|
|
|
|
|
|
|
|
|
def test_spans_entity_merge_iob():
|
|
|
|
# Test entity IOB stays consistent after merging
|
|
|
|
words = ["abc", "d", "e"]
|
|
|
|
doc = Doc(Vocab(), words=words)
|
2019-02-14 18:56:38 +00:00
|
|
|
doc.ents = [(doc.vocab.strings.add("ent-abcd"), 0, 2)]
|
2019-02-14 14:27:13 +00:00
|
|
|
assert doc[0].ent_iob_ == "B"
|
|
|
|
assert doc[1].ent_iob_ == "I"
|
|
|
|
|
|
|
|
with doc.retokenize() as retokenizer:
|
|
|
|
retokenizer.split(doc[0], ["a", "b", "c"], [1, 1, 0])
|
|
|
|
assert doc[0].ent_iob_ == "B"
|
|
|
|
assert doc[1].ent_iob_ == "I"
|
|
|
|
assert doc[2].ent_iob_ == "I"
|
|
|
|
assert doc[3].ent_iob_ == "I"
|
|
|
|
|
2019-02-14 18:56:38 +00:00
|
|
|
|
2019-02-14 14:27:13 +00:00
|
|
|
def test_spans_sentence_update_after_merge(en_tokenizer):
|
2019-02-14 18:56:38 +00:00
|
|
|
# fmt: off
|
2019-02-14 14:27:13 +00:00
|
|
|
text = "StewartLee is a stand up comedian. He lives in England and loves JoePasquale."
|
|
|
|
heads = [1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2]
|
2019-02-14 18:56:38 +00:00
|
|
|
deps = ["nsubj", "ROOT", "det", "amod", "prt", "attr", "punct", "nsubj",
|
|
|
|
"ROOT", "prep", "pobj", "cc", "conj", "compound", "punct"]
|
|
|
|
# fmt: on
|
2019-02-14 14:27:13 +00:00
|
|
|
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
|
|
|
|
sent1, sent2 = list(doc.sents)
|
|
|
|
init_len = len(sent1)
|
|
|
|
init_len2 = len(sent2)
|
|
|
|
with doc.retokenize() as retokenizer:
|
|
|
|
retokenizer.split(doc[0], ["Stewart", "Lee"], [1, 0])
|
|
|
|
retokenizer.split(doc[14], ["Joe", "Pasquale"], [1, 0])
|
|
|
|
sent1, sent2 = list(doc.sents)
|
|
|
|
assert len(sent1) == init_len + 1
|
|
|
|
assert len(sent2) == init_len2 + 1
|