spaCy/bin/wiki_entity_linking/README.md

35 lines
2.0 KiB
Markdown

## Entity Linking with Wikipedia and Wikidata
### Step 1: Create a Knowledge Base (KB) and training data
Run `wikipedia_pretrain_kb.py`
* This takes as input the locations of a **Wikipedia and a Wikidata dump**, and produces a **KB directory** + **training file**
* WikiData: get `latest-all.json.bz2` from https://dumps.wikimedia.org/wikidatawiki/entities/
* Wikipedia: get `enwiki-latest-pages-articles-multistream.xml.bz2` from https://dumps.wikimedia.org/enwiki/latest/ (or for any other language)
* You can set the filtering parameters for KB construction:
* `max_per_alias`: (max) number of candidate entities in the KB per alias/synonym
* `min_freq`: threshold of number of times an entity should occur in the corpus to be included in the KB
* `min_pair`: threshold of number of times an entity+alias combination should occur in the corpus to be included in the KB
* Further parameters to set:
* `descriptions_from_wikipedia`: whether to parse descriptions from Wikipedia (`True`) or Wikidata (`False`)
* `entity_vector_length`: length of the pre-trained entity description vectors
* `lang`: language for which to fetch Wikidata information (as the dump contains all languages)
Quick testing and rerunning:
* When trying out the pipeline for a quick test, set `limit_prior`, `limit_train` and/or `limit_wd` to read only parts of the dumps instead of everything.
* If you only want to (re)run certain parts of the pipeline, just remove the corresponding files and they will be recalculated or reparsed.
### Step 2: Train an Entity Linking model
Run `wikidata_train_entity_linker.py`
* This takes the **KB directory** produced by Step 1, and trains an **Entity Linking model**
* You can set the learning parameters for the EL training:
* `epochs`: number of training iterations
* `dropout`: dropout rate
* `lr`: learning rate
* `l2`: L2 regularization
* Specify the number of training and dev testing entities with `train_inst` and `dev_inst` respectively
* Further parameters to set:
* `labels_discard`: NER label types to discard during training