spaCy/website/docs/api/data-formats.md

272 lines
12 KiB
Markdown

---
title: Data formats
teaser: Details on spaCy's input and output data formats
menu:
- ['Training Data', 'training']
- ['Training Config', 'config']
- ['Vocabulary', 'vocab']
---
This section documents input and output formats of data used by spaCy, including
training data and lexical vocabulary data. For an overview of label schemes used
by the models, see the [models directory](/models). Each model documents the
label schemes used in its components, depending on the data it was trained on.
## Training data {#training}
### Binary training format {#binary-training new="3"}
<!-- TODO: document DocBin format -->
### JSON input format for training {#json-input}
spaCy takes training data in JSON format. The built-in
[`convert`](/api/cli#convert) command helps you convert the `.conllu` format
used by the
[Universal Dependencies corpora](https://github.com/UniversalDependencies) to
spaCy's training format. To convert one or more existing `Doc` objects to
spaCy's JSON format, you can use the
[`gold.docs_to_json`](/api/top-level#docs_to_json) helper.
> #### Annotating entities {#biluo}
>
> Named entities are provided in the
> [BILUO](/usage/linguistic-features#accessing-ner) notation. Tokens outside an
> entity are set to `"O"` and tokens that are part of an entity are set to the
> entity label, prefixed by the BILUO marker. For example `"B-ORG"` describes
> the first token of a multi-token `ORG` entity and `"U-PERSON"` a single token
> representing a `PERSON` entity. The
> [`biluo_tags_from_offsets`](/api/top-level#biluo_tags_from_offsets) function
> can help you convert entity offsets to the right format.
```python
### Example structure
[{
"id": int, # ID of the document within the corpus
"paragraphs": [{ # list of paragraphs in the corpus
"raw": string, # raw text of the paragraph
"sentences": [{ # list of sentences in the paragraph
"tokens": [{ # list of tokens in the sentence
"id": int, # index of the token in the document
"dep": string, # dependency label
"head": int, # offset of token head relative to token index
"tag": string, # part-of-speech tag
"orth": string, # verbatim text of the token
"ner": string # BILUO label, e.g. "O" or "B-ORG"
}],
"brackets": [{ # phrase structure (NOT USED by current models)
"first": int, # index of first token
"last": int, # index of last token
"label": string # phrase label
}]
}],
"cats": [{ # new in v2.2: categories for text classifier
"label": string, # text category label
"value": float / bool # label applies (1.0/true) or not (0.0/false)
}]
}]
}]
```
Here's an example of dependencies, part-of-speech tags and names entities, taken
from the English Wall Street Journal portion of the Penn Treebank:
```json
https://github.com/explosion/spaCy/tree/master/examples/training/training-data.json
```
### Annotations in dictionary format {#dict-input}
To create [`Example`](/api/example) objects, you can create a dictionary of the
gold-standard annotations `gold_dict`, and then call
```python
example = Example.from_dict(doc, gold_dict)
```
There are currently two formats supported for this dictionary of annotations:
one with a simple, flat structure of keywords, and one with a more hierarchical
structure.
#### Flat structure {#dict-flat}
Here is the full overview of potential entries in a flat dictionary of
annotations. You need to only specify those keys corresponding to the task you
want to train.
```python
### Flat dictionary
{
"text": string, # Raw text.
"words": List[string], # List of gold tokens.
"lemmas": List[string], # List of lemmas.
"spaces": List[bool], # List of boolean values indicating whether the corresponding tokens is followed by a space or not.
"tags": List[string], # List of fine-grained [POS tags](/usage/linguistic-features#pos-tagging).
"pos": List[string], # List of coarse-grained [POS tags](/usage/linguistic-features#pos-tagging).
"morphs": List[string], # List of [morphological features](/usage/linguistic-features#rule-based-morphology).
"sent_starts": List[bool], # List of boolean values indicating whether each token is the first of a sentence or not.
"deps": List[string], # List of string values indicating the [dependency relation](/usage/linguistic-features#dependency-parse) of a token to its head.
"heads": List[int], # List of integer values indicating the dependency head of each token, referring to the absolute index of each token in the text.
"entities": List[string], # Option 1: List of [BILUO tags](#biluo) per token of the format `"{action}-{label}"`, or `None` for unannotated tokens.
"entities": List[(int, int, string)], # Option 2: List of `"(start, end, label)"` tuples defining all entities in.
"cats": Dict[str, float], # Dictionary of `label:value` pairs indicating how relevant a certain [category](/api/textcategorizer) is for the text.
"links": Dict[(int, int), Dict], # Dictionary of `offset:dict` pairs defining [named entity links](/usage/linguistic-features#entity-linking). The charachter offsets are linked to a dictionary of relevant knowledge base IDs.
}
```
There are a few caveats to take into account:
- Multiple formats are possible for the "entities" entry, but you have to pick
one.
- Any values for sentence starts will be ignored if there are annotations for
dependency relations.
- If the dictionary contains values for "text" and "words", but not "spaces",
the latter are inferred automatically. If "words" is not provided either, the
values are inferred from the `doc` argument.
##### Examples
```python
# Training data for a part-of-speech tagger
doc = Doc(vocab, words=["I", "like", "stuff"])
example = Example.from_dict(doc, {"tags": ["NOUN", "VERB", "NOUN"]})
# Training data for an entity recognizer (option 1)
doc = nlp("Laura flew to Silicon Valley.")
biluo_tags = ["U-PERS", "O", "O", "B-LOC", "L-LOC"]
example = Example.from_dict(doc, {"entities": biluo_tags})
# Training data for an entity recognizer (option 2)
doc = nlp("Laura flew to Silicon Valley.")
entity_tuples = [
(0, 5, "PERSON"),
(14, 28, "LOC"),
]
example = Example.from_dict(doc, {"entities": entity_tuples})
# Training data for text categorization
doc = nlp("I'm pretty happy about that!")
example = Example.from_dict(doc, {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}})
# Training data for an Entity Linking component
doc = nlp("Russ Cochran his reprints include EC Comics.")
example = Example.from_dict(doc, {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}})
```
#### Hierachical structure {#dict-hierarch}
Internally, a more hierarchical dictionary structure is used to store
gold-standard annotations. Its format is similar to the structure described in
the previous section, but there are two main sections `token_annotation` and
`doc_annotation`, and the keys for token annotations should be uppercase
[`Token` attributes](/api/token#attributes) such as "ORTH" and "TAG".
```python
### Hierarchical dictionary
{
"text": string, # Raw text.
"token_annotation": {
"ORTH": List[string], # List of gold tokens.
"LEMMA": List[string], # List of lemmas.
"SPACY": List[bool], # List of boolean values indicating whether the corresponding tokens is followed by a space or not.
"TAG": List[string], # List of fine-grained [POS tags](/usage/linguistic-features#pos-tagging).
"POS": List[string], # List of coarse-grained [POS tags](/usage/linguistic-features#pos-tagging).
"MORPH": List[string], # List of [morphological features](/usage/linguistic-features#rule-based-morphology).
"SENT_START": List[bool], # List of boolean values indicating whether each token is the first of a sentence or not.
"DEP": List[string], # List of string values indicating the [dependency relation](/usage/linguistic-features#dependency-parse) of a token to its head.
"HEAD": List[int], # List of integer values indicating the dependency head of each token, referring to the absolute index of each token in the text.
},
"doc_annotation": {
"entities": List[(int, int, string)], # List of [BILUO tags](#biluo) per token of the format `"{action}-{label}"`, or `None` for unannotated tokens.
"cats": Dict[str, float], # Dictionary of `label:value` pairs indicating how relevant a certain [category](/api/textcategorizer) is for the text.
"links": Dict[(int, int), Dict], # Dictionary of `offset:dict` pairs defining [named entity links](/usage/linguistic-features#entity-linking). The charachter offsets are linked to a dictionary of relevant knowledge base IDs.
}
}
```
There are a few caveats to take into account:
- Any values for sentence starts will be ignored if there are annotations for
dependency relations.
- If the dictionary contains values for "text" and "ORTH", but not "SPACY", the
latter are inferred automatically. If "ORTH" is not provided either, the
values are inferred from the `doc` argument.
## Training config {#config new="3"}
Config files define the training process and model pipeline and can be passed to
[`spacy train`](/api/cli#train). They use
[Thinc's configuration system](https://thinc.ai/docs/usage-config) under the
hood. For details on how to use training configs, see the
[usage documentation](/usage/training#config).
<Infobox variant="warning">
The `@` syntax lets you refer to function names registered in the
[function registry](/api/top-level#registry). For example,
`@architectures = "spacy.HashEmbedCNN.v1"` refers to a registered function of
the name `"spacy.HashEmbedCNN.v1"` and all other values defined in its block
will be passed into that function as arguments. Those arguments depend on the
registered function. See the [model architectures](/api/architectures) docs for
API details.
</Infobox>
<!-- TODO: we need to come up with a good way to present the sections and their expected values visually? -->
<!-- TODO: once we know how we want to implement "starter config" workflow or outputting a full default config for the user, update this section with the command -->
## Lexical data for vocabulary {#vocab-jsonl new="2"}
To populate a model's vocabulary, you can use the
[`spacy init-model`](/api/cli#init-model) command and load in a
[newline-delimited JSON](http://jsonlines.org/) (JSONL) file containing one
lexical entry per line via the `--jsonl-loc` option. The first line defines the
language and vocabulary settings. All other lines are expected to be JSON
objects describing an individual lexeme. The lexical attributes will be then set
as attributes on spaCy's [`Lexeme`](/api/lexeme#attributes) object. The `vocab`
command outputs a ready-to-use spaCy model with a `Vocab` containing the lexical
data.
```python
### First line
{"lang": "en", "settings": {"oov_prob": -20.502029418945312}}
```
```python
### Entry structure
{
"orth": string, # the word text
"id": int, # can correspond to row in vectors table
"lower": string,
"norm": string,
"shape": string
"prefix": string,
"suffix": string,
"length": int,
"cluster": string,
"prob": float,
"is_alpha": bool,
"is_ascii": bool,
"is_digit": bool,
"is_lower": bool,
"is_punct": bool,
"is_space": bool,
"is_title": bool,
"is_upper": bool,
"like_url": bool,
"like_num": bool,
"like_email": bool,
"is_stop": bool,
"is_oov": bool,
"is_quote": bool,
"is_left_punct": bool,
"is_right_punct": bool
}
```
Here's an example of the 20 most frequent lexemes in the English training data:
```json
https://github.com/explosion/spaCy/tree/master/examples/training/vocab-data.jsonl
```