spaCy/spacy/serialize/huffman.pyx

158 lines
5.2 KiB
Cython

cimport cython
from .bits cimport bit_append
from .bits cimport BitArray
cdef class HuffmanCodec:
"""Create a Huffman code table, and use it to pack and unpack sequences into
byte strings. Emphasis is on efficiency, so API is quite strict:
Messages will be encoded/decoded as indices that refer to the probability sequence.
For instance, the sequence [5, 10, 8] indicates the 5th most frequent item,
the 10th most frequent item, the 8th most frequent item.
Arguments:
weights (float[:]): A descending-sorted sequence of probabilities/weights.
Must include a weight for an EOL symbol.
eol (uint32_t): The index of the weight of the EOL symbol.
"""
def __init__(self, float[:] weights):
self.codes.resize(len(weights))
for i in range(len(self.codes)):
self.codes[i].bits = 0
self.codes[i].length = 0
populate_nodes(self.nodes, weights)
cdef Code path
path.bits = 0
path.length = 0
assign_codes(self.nodes, self.codes, len(self.nodes) - 1, path)
def encode(self, uint32_t[:] msg, BitArray into_bits):
cdef uint32_t i
for i in range(len(msg)):
into_bits.extend(self.codes[msg[i]].bits, self.codes[msg[i]].length)
def decode(self, bits, uint32_t[:] into_msg):
node = self.nodes.back()
cdef int i = 0
cdef int n = len(into_msg)
for bit in bits:
branch = node.right if bit else node.left
if branch >= 0:
node = self.nodes.at(branch)
else:
into_msg[i] = -(branch + 1)
node = self.nodes.back()
i += 1
if i == n:
break
else:
raise Exception
property strings:
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
def __get__(self):
output = []
cdef int i, j
cdef bytes string
cdef Code code
for i in range(self.codes.size()):
code = self.codes[i]
string = b'{0:b}'.format(code.bits).rjust(code.length, '0')
string = string[::-1]
output.append(string)
return output
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
cdef int populate_nodes(vector[Node]& nodes, float[:] probs) except -1:
assert len(probs) >= 3
cdef int size = len(probs)
cdef int i = size - 1
cdef int j = 0
while i >= 0 or (j+1) < nodes.size():
if i < 0:
_cover_two_nodes(nodes, j)
j += 2
elif j >= nodes.size():
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
i -= 2
elif i >= 1 and (j == nodes.size() or probs[i-1] < nodes[j].prob):
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
i -= 2
elif (j+1) < nodes.size() and nodes[j+1].prob < probs[i]:
_cover_two_nodes(nodes, j)
j += 2
else:
_cover_one_word_one_node(nodes, j, i, probs[i])
i -= 1
j += 1
return 0
cdef int _cover_two_nodes(vector[Node]& nodes, int j) nogil:
"""Introduce a new non-terminal, over two non-terminals)"""
cdef Node node
node.left = j
node.right = j+1
node.prob = nodes[j].prob + nodes[j+1].prob
nodes.push_back(node)
cdef int _cover_one_word_one_node(vector[Node]& nodes, int j, int id_, float prob) nogil:
"""Introduce a new non-terminal, over one terminal and one non-terminal."""
cdef Node node
# Encode leaves as negative integers, where the integer is the index of the
# word in the vocabulary.
cdef int64_t leaf_id = - <int64_t>(id_ + 1)
cdef float new_prob = prob + nodes[j].prob
if prob < nodes[j].prob:
node.left = leaf_id
node.right = j
node.prob = new_prob
else:
node.left = j
node.right = leaf_id
node.prob = new_prob
nodes.push_back(node)
cdef int _cover_two_words(vector[Node]& nodes, int id1, int id2, float prob) nogil:
"""Introduce a new node, over two non-terminals."""
cdef Node node
node.left = -(id1+1)
node.right = -(id2+1)
node.prob = prob
nodes.push_back(node)
cdef int assign_codes(vector[Node]& nodes, vector[Code]& codes, int i, Code path) except -1:
"""Recursively assign paths, from the top down. At the end, the entry codes[i]
knows the bit-address of the node[j] that points to entry i in the vocabulary.
So, to encode i, we go to codes[i] and read its bit-string. To decode, we
navigate nodes recursively.
"""
cdef Code left_path = bit_append(path, 0)
cdef Code right_path = bit_append(path, 1)
# Assign down left branch
if nodes[i].left >= 0:
assign_codes(nodes, codes, nodes[i].left, left_path)
else:
# Leaf on left
id_ = -(nodes[i].left + 1)
codes[id_] = left_path
# Assign down right branch
if nodes[i].right >= 0:
assign_codes(nodes, codes, nodes[i].right, right_path)
else:
# Leaf on right
id_ = -(nodes[i].right + 1)
codes[id_] = right_path