mirror of https://github.com/explosion/spaCy.git
158 lines
5.2 KiB
Cython
158 lines
5.2 KiB
Cython
|
cimport cython
|
||
|
|
||
|
from .bits cimport bit_append
|
||
|
from .bits cimport BitArray
|
||
|
|
||
|
|
||
|
cdef class HuffmanCodec:
|
||
|
"""Create a Huffman code table, and use it to pack and unpack sequences into
|
||
|
byte strings. Emphasis is on efficiency, so API is quite strict:
|
||
|
|
||
|
Messages will be encoded/decoded as indices that refer to the probability sequence.
|
||
|
For instance, the sequence [5, 10, 8] indicates the 5th most frequent item,
|
||
|
the 10th most frequent item, the 8th most frequent item.
|
||
|
|
||
|
Arguments:
|
||
|
weights (float[:]): A descending-sorted sequence of probabilities/weights.
|
||
|
Must include a weight for an EOL symbol.
|
||
|
|
||
|
eol (uint32_t): The index of the weight of the EOL symbol.
|
||
|
"""
|
||
|
def __init__(self, float[:] weights):
|
||
|
self.codes.resize(len(weights))
|
||
|
for i in range(len(self.codes)):
|
||
|
self.codes[i].bits = 0
|
||
|
self.codes[i].length = 0
|
||
|
populate_nodes(self.nodes, weights)
|
||
|
cdef Code path
|
||
|
path.bits = 0
|
||
|
path.length = 0
|
||
|
assign_codes(self.nodes, self.codes, len(self.nodes) - 1, path)
|
||
|
|
||
|
def encode(self, uint32_t[:] msg, BitArray into_bits):
|
||
|
cdef uint32_t i
|
||
|
for i in range(len(msg)):
|
||
|
into_bits.extend(self.codes[msg[i]].bits, self.codes[msg[i]].length)
|
||
|
|
||
|
def decode(self, bits, uint32_t[:] into_msg):
|
||
|
node = self.nodes.back()
|
||
|
cdef int i = 0
|
||
|
cdef int n = len(into_msg)
|
||
|
for bit in bits:
|
||
|
branch = node.right if bit else node.left
|
||
|
if branch >= 0:
|
||
|
node = self.nodes.at(branch)
|
||
|
else:
|
||
|
into_msg[i] = -(branch + 1)
|
||
|
node = self.nodes.back()
|
||
|
i += 1
|
||
|
if i == n:
|
||
|
break
|
||
|
else:
|
||
|
raise Exception
|
||
|
|
||
|
property strings:
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
@cython.nonecheck(False)
|
||
|
def __get__(self):
|
||
|
output = []
|
||
|
cdef int i, j
|
||
|
cdef bytes string
|
||
|
cdef Code code
|
||
|
for i in range(self.codes.size()):
|
||
|
code = self.codes[i]
|
||
|
string = b'{0:b}'.format(code.bits).rjust(code.length, '0')
|
||
|
string = string[::-1]
|
||
|
output.append(string)
|
||
|
return output
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
@cython.nonecheck(False)
|
||
|
cdef int populate_nodes(vector[Node]& nodes, float[:] probs) except -1:
|
||
|
assert len(probs) >= 3
|
||
|
cdef int size = len(probs)
|
||
|
cdef int i = size - 1
|
||
|
cdef int j = 0
|
||
|
|
||
|
while i >= 0 or (j+1) < nodes.size():
|
||
|
if i < 0:
|
||
|
_cover_two_nodes(nodes, j)
|
||
|
j += 2
|
||
|
elif j >= nodes.size():
|
||
|
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
|
||
|
i -= 2
|
||
|
elif i >= 1 and (j == nodes.size() or probs[i-1] < nodes[j].prob):
|
||
|
_cover_two_words(nodes, i, i-1, probs[i] + probs[i-1])
|
||
|
i -= 2
|
||
|
elif (j+1) < nodes.size() and nodes[j+1].prob < probs[i]:
|
||
|
_cover_two_nodes(nodes, j)
|
||
|
j += 2
|
||
|
else:
|
||
|
_cover_one_word_one_node(nodes, j, i, probs[i])
|
||
|
i -= 1
|
||
|
j += 1
|
||
|
return 0
|
||
|
|
||
|
cdef int _cover_two_nodes(vector[Node]& nodes, int j) nogil:
|
||
|
"""Introduce a new non-terminal, over two non-terminals)"""
|
||
|
cdef Node node
|
||
|
node.left = j
|
||
|
node.right = j+1
|
||
|
node.prob = nodes[j].prob + nodes[j+1].prob
|
||
|
nodes.push_back(node)
|
||
|
|
||
|
|
||
|
cdef int _cover_one_word_one_node(vector[Node]& nodes, int j, int id_, float prob) nogil:
|
||
|
"""Introduce a new non-terminal, over one terminal and one non-terminal."""
|
||
|
cdef Node node
|
||
|
# Encode leaves as negative integers, where the integer is the index of the
|
||
|
# word in the vocabulary.
|
||
|
cdef int64_t leaf_id = - <int64_t>(id_ + 1)
|
||
|
cdef float new_prob = prob + nodes[j].prob
|
||
|
if prob < nodes[j].prob:
|
||
|
node.left = leaf_id
|
||
|
node.right = j
|
||
|
node.prob = new_prob
|
||
|
else:
|
||
|
node.left = j
|
||
|
node.right = leaf_id
|
||
|
node.prob = new_prob
|
||
|
nodes.push_back(node)
|
||
|
|
||
|
|
||
|
cdef int _cover_two_words(vector[Node]& nodes, int id1, int id2, float prob) nogil:
|
||
|
"""Introduce a new node, over two non-terminals."""
|
||
|
cdef Node node
|
||
|
node.left = -(id1+1)
|
||
|
node.right = -(id2+1)
|
||
|
node.prob = prob
|
||
|
nodes.push_back(node)
|
||
|
|
||
|
|
||
|
cdef int assign_codes(vector[Node]& nodes, vector[Code]& codes, int i, Code path) except -1:
|
||
|
"""Recursively assign paths, from the top down. At the end, the entry codes[i]
|
||
|
knows the bit-address of the node[j] that points to entry i in the vocabulary.
|
||
|
So, to encode i, we go to codes[i] and read its bit-string. To decode, we
|
||
|
navigate nodes recursively.
|
||
|
"""
|
||
|
cdef Code left_path = bit_append(path, 0)
|
||
|
cdef Code right_path = bit_append(path, 1)
|
||
|
|
||
|
# Assign down left branch
|
||
|
if nodes[i].left >= 0:
|
||
|
assign_codes(nodes, codes, nodes[i].left, left_path)
|
||
|
else:
|
||
|
# Leaf on left
|
||
|
id_ = -(nodes[i].left + 1)
|
||
|
codes[id_] = left_path
|
||
|
# Assign down right branch
|
||
|
if nodes[i].right >= 0:
|
||
|
assign_codes(nodes, codes, nodes[i].right, right_path)
|
||
|
else:
|
||
|
# Leaf on right
|
||
|
id_ = -(nodes[i].right + 1)
|
||
|
codes[id_] = right_path
|