spaCy/website/docs/api/matcher.md

250 lines
15 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Matcher
teaser: Match sequences of tokens, based on pattern rules
tag: class
source: spacy/matcher/matcher.pyx
---
The `Matcher` lets you find words and phrases using rules describing their token
attributes. Rules can refer to token annotations (like the text or
part-of-speech tags), as well as lexical attributes like `Token.is_punct`.
Applying the matcher to a [`Doc`](/api/doc) gives you access to the matched
tokens in context. For in-depth examples and workflows for combining rules and
statistical models, see the [usage guide](/usage/rule-based-matching) on
rule-based matching.
## Pattern format {#patterns}
> ```json
> ### Example
> [
> {"LOWER": "i"},
> {"LEMMA": {"IN": ["like", "love"]}},
> {"POS": "NOUN", "OP": "+"}
> ]
> ```
A pattern added to the `Matcher` consists of a list of dictionaries. Each
dictionary describes **one token** and its attributes. The available token
pattern keys correspond to a number of
[`Token` attributes](/api/token#attributes). The supported attributes for
rule-based matching are:
| Attribute |  Description |
| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| `ORTH` | The exact verbatim text of a token. ~~str~~ |
| `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ |
| `LOWER` | The lowercase form of the token text. ~~str~~ |
|  `LENGTH` | The length of the token text. ~~int~~ |
|  `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
|  `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
|  `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
|  `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
|  `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `SPACY` | Token has a trailing space. ~~bool~~ |
|  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~ |
| `ENT_TYPE` | The token's entity label. ~~str~~ |
| `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ |
| `OP` | Operator or quantifier to determine how often to match a token pattern. ~~str~~ |
Operators and quantifiers define **how often** a token pattern should be
matched:
> ```json
> ### Example
> [
> {"POS": "ADJ", "OP": "*"},
> {"POS": "NOUN", "OP": "+"}
> ]
> ```
| OP | Description |
| --- | ---------------------------------------------------------------- |
| `!` | Negate the pattern, by requiring it to match exactly 0 times. |
| `?` | Make the pattern optional, by allowing it to match 0 or 1 times. |
| `+` | Require the pattern to match 1 or more times. |
| `*` | Allow the pattern to match 0 or more times. |
Token patterns can also map to a **dictionary of properties** instead of a
single value to indicate whether the expected value is a member of a list or how
it compares to another value.
> ```json
> ### Example
> [
> {"LEMMA": {"IN": ["like", "love", "enjoy"]}},
> {"POS": "PROPN", "LENGTH": {">=": 10}},
> ]
> ```
| Attribute | Description |
| -------------------------- | -------------------------------------------------------------------------------------------------------- |
| `IN` | Attribute value is member of a list. ~~Any~~ |
| `NOT_IN` | Attribute value is _not_ member of a list. ~~Any~~ |
| `IS_SUBSET` | Attribute value (for `MORPH` or custom list attributes) is a subset of a list. ~~Any~~ |
| `IS_SUPERSET` | Attribute value (for `MORPH` or custom list attributes) is a superset of a list. ~~Any~~ |
| `INTERSECTS` | Attribute value (for `MORPH` or custom list attribute) has a non-empty intersection with a list. ~~Any~~ |
| `==`, `>=`, `<=`, `>`, `<` | Attribute value is equal, greater or equal, smaller or equal, greater or smaller. ~~Union[int, float]~~ |
## Matcher.\_\_init\_\_ {#init tag="method"}
Create the rule-based `Matcher`. If `validate=True` is set, all patterns added
to the matcher will be validated against a JSON schema and a `MatchPatternError`
is raised if problems are found. Those can include incorrect types (e.g. a
string where an integer is expected) or unexpected property names.
> #### Example
>
> ```python
> from spacy.matcher import Matcher
> matcher = Matcher(nlp.vocab)
> ```
| Name | Description |
| --------------------------------------- | ----------------------------------------------------------------------------------------------------- |
| `vocab` | The vocabulary object, which must be shared with the documents the matcher will operate on. ~~Vocab~~ |
| `validate` <Tag variant="new">2.1</Tag> | Validate all patterns added to this matcher. ~~bool~~ |
## Matcher.\_\_call\_\_ {#call tag="method"}
Find all token sequences matching the supplied patterns on the `Doc` or `Span`.
> #### Example
>
> ```python
> from spacy.matcher import Matcher
>
> matcher = Matcher(nlp.vocab)
> pattern = [{"LOWER": "hello"}, {"LOWER": "world"}]
> matcher.add("HelloWorld", [pattern])
> doc = nlp("hello world!")
> matches = matcher(doc)
> ```
| Name | Description |
| ------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
| _keyword-only_ | |
| `as_spans` <Tag variant="new">3</Tag> | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
| `allow_missing` <Tag variant="new">3</Tag> | Whether to skip checks for missing annotation for attributes included in patterns. Defaults to `False`. ~~bool~~ |
| `with_alignments` <Tag variant="new">3.0.6</Tag> | Return match alignment information as part of the match tuple as `List[int]` with the same length as the matched span. Each entry denotes the corresponding index of the token pattern. If `as_spans` is set to `True`, this setting is ignored. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
## Matcher.\_\_len\_\_ {#len tag="method" new="2"}
Get the number of rules added to the matcher. Note that this only returns the
number of rules (identical with the number of IDs), not the number of individual
patterns.
> #### Example
>
> ```python
> matcher = Matcher(nlp.vocab)
> assert len(matcher) == 0
> matcher.add("Rule", [[{"ORTH": "test"}]])
> assert len(matcher) == 1
> ```
| Name | Description |
| ----------- | ---------------------------- |
| **RETURNS** | The number of rules. ~~int~~ |
## Matcher.\_\_contains\_\_ {#contains tag="method" new="2"}
Check whether the matcher contains rules for a match ID.
> #### Example
>
> ```python
> matcher = Matcher(nlp.vocab)
> assert "Rule" not in matcher
> matcher.add("Rule", [[{'ORTH': 'test'}]])
> assert "Rule" in matcher
> ```
| Name | Description |
| ----------- | -------------------------------------------------------------- |
| `key` | The match ID. ~~str~~ |
| **RETURNS** | Whether the matcher contains rules for this match ID. ~~bool~~ |
## Matcher.add {#add tag="method" new="2"}
Add a rule to the matcher, consisting of an ID key, one or more patterns, and an
optional callback function to act on the matches. The callback function will
receive the arguments `matcher`, `doc`, `i` and `matches`. If a pattern already
exists for the given ID, the patterns will be extended. An `on_match` callback
will be overwritten.
> #### Example
>
> ```python
> def on_match(matcher, doc, id, matches):
> print('Matched!', matches)
>
> matcher = Matcher(nlp.vocab)
> patterns = [
> [{"LOWER": "hello"}, {"LOWER": "world"}],
> [{"ORTH": "Google"}, {"ORTH": "Maps"}]
> ]
> matcher.add("TEST_PATTERNS", patterns)
> doc = nlp("HELLO WORLD on Google Maps.")
> matches = matcher(doc)
> ```
<Infobox title="Changed in v3.0" variant="warning">
As of spaCy v3.0, `Matcher.add` takes a list of patterns as the second argument
(instead of a variable number of arguments). The `on_match` callback becomes an
optional keyword argument.
```diff
patterns = [[{"TEXT": "Google"}, {"TEXT": "Now"}], [{"TEXT": "GoogleNow"}]]
- matcher.add("GoogleNow", on_match, *patterns)
+ matcher.add("GoogleNow", patterns, on_match=on_match)
```
</Infobox>
| Name | Description |
| ----------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `match_id` | An ID for the thing you're matching. ~~str~~ |
| `patterns` | Match pattern. A pattern consists of a list of dicts, where each dict describes a token. ~~List[List[Dict[str, Any]]]~~ |
| _keyword-only_ | |
| `on_match` | Callback function to act on matches. Takes the arguments `matcher`, `doc`, `i` and `matches`. ~~Optional[Callable[[Matcher, Doc, int, List[tuple], Any]]~~ |
| `greedy` <Tag variant="new">3</Tag> | Optional filter for greedy matches. Can either be `"FIRST"` or `"LONGEST"`. ~~Optional[str]~~ |
## Matcher.remove {#remove tag="method" new="2"}
Remove a rule from the matcher. A `KeyError` is raised if the match ID does not
exist.
> #### Example
>
> ```python
> matcher.add("Rule", [[{"ORTH": "test"}]])
> assert "Rule" in matcher
> matcher.remove("Rule")
> assert "Rule" not in matcher
> ```
| Name | Description |
| ----- | --------------------------------- |
| `key` | The ID of the match rule. ~~str~~ |
## Matcher.get {#get tag="method" new="2"}
Retrieve the pattern stored for a key. Returns the rule as an
`(on_match, patterns)` tuple containing the callback and available patterns.
> #### Example
>
> ```python
> matcher.add("Rule", [[{"ORTH": "test"}]])
> on_match, patterns = matcher.get("Rule")
> ```
| Name | Description |
| ----------- | --------------------------------------------------------------------------------------------- |
| `key` | The ID of the match rule. ~~str~~ |
| **RETURNS** | The rule, as an `(on_match, patterns)` tuple. ~~Tuple[Optional[Callable], List[List[dict]]]~~ |