mirror of https://github.com/explosion/spaCy.git
150 lines
5.5 KiB
Markdown
150 lines
5.5 KiB
Markdown
---
|
|
title: DocBin
|
|
tag: class
|
|
new: 2.2
|
|
teaser: Pack Doc objects for binary serialization
|
|
source: spacy/tokens/_serialize.py
|
|
---
|
|
|
|
The `DocBin` class lets you efficiently serialize the information from a
|
|
collection of `Doc` objects. You can control which information is serialized by
|
|
passing a list of attribute IDs, and optionally also specify whether the user
|
|
data is serialized. The `DocBin` is faster and produces smaller data sizes than
|
|
pickle, and allows you to deserialize without executing arbitrary Python code. A
|
|
notable downside to this format is that you can't easily extract just one
|
|
document from the `DocBin`. The serialization format is gzipped msgpack, where
|
|
the msgpack object has the following structure:
|
|
|
|
```python
|
|
### msgpack object strcutrue
|
|
{
|
|
"attrs": List[uint64], # e.g. [TAG, HEAD, ENT_IOB, ENT_TYPE]
|
|
"tokens": bytes, # Serialized numpy uint64 array with the token data
|
|
"spaces": bytes, # Serialized numpy boolean array with spaces data
|
|
"lengths": bytes, # Serialized numpy int32 array with the doc lengths
|
|
"strings": List[unicode] # List of unique strings in the token data
|
|
}
|
|
```
|
|
|
|
Strings for the words, tags, labels etc are represented by 64-bit hashes in the
|
|
token data, and every string that occurs at least once is passed via the strings
|
|
object. This means the storage is more efficient if you pack more documents
|
|
together, because you have less duplication in the strings. For usage examples,
|
|
see the docs on [serializing `Doc` objects](/usage/saving-loading#docs).
|
|
|
|
## DocBin.\_\_init\_\_ {#init tag="method"}
|
|
|
|
Create a `DocBin` object to hold serialized annotations.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> from spacy.tokens import DocBin
|
|
> doc_bin = DocBin(attrs=["ENT_IOB", "ENT_TYPE"])
|
|
> ```
|
|
|
|
| Argument | Type | Description |
|
|
| ----------------- | -------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
|
| `attrs` | list | List of attributes to serialize. `orth` (hash of token text) and `spacy` (whether the token is followed by whitespace) are always serialized, so they're not required. Defaults to `None`. |
|
|
| `store_user_data` | bool | Whether to include the `Doc.user_data` and the values of custom extension attributes. Defaults to `False`. |
|
|
| **RETURNS** | `DocBin` | The newly constructed object. |
|
|
|
|
## DocBin.\_\len\_\_ {#len tag="method"}
|
|
|
|
Get the number of `Doc` objects that were added to the `DocBin`.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc_bin = DocBin(attrs=["LEMMA"])
|
|
> doc = nlp("This is a document to serialize.")
|
|
> doc_bin.add(doc)
|
|
> assert len(doc_bin) == 1
|
|
> ```
|
|
|
|
| Argument | Type | Description |
|
|
| ----------- | ---- | ------------------------------------------- |
|
|
| **RETURNS** | int | The number of `Doc`s added to the `DocBin`. |
|
|
|
|
## DocBin.add {#add tag="method"}
|
|
|
|
Add a `Doc`'s annotations to the `DocBin` for serialization.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc_bin = DocBin(attrs=["LEMMA"])
|
|
> doc = nlp("This is a document to serialize.")
|
|
> doc_bin.add(doc)
|
|
> ```
|
|
|
|
| Argument | Type | Description |
|
|
| -------- | ----- | ------------------------ |
|
|
| `doc` | `Doc` | The `Doc` object to add. |
|
|
|
|
## DocBin.get_docs {#get_docs tag="method"}
|
|
|
|
Recover `Doc` objects from the annotations, using the given vocab.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> docs = list(doc_bin.get_docs(nlp.vocab))
|
|
> ```
|
|
|
|
| Argument | Type | Description |
|
|
| ---------- | ------- | ------------------ |
|
|
| `vocab` | `Vocab` | The shared vocab. |
|
|
| **YIELDS** | `Doc` | The `Doc` objects. |
|
|
|
|
## DocBin.merge {#merge tag="method"}
|
|
|
|
Extend the annotations of this `DocBin` with the annotations from another. Will
|
|
raise an error if the pre-defined attrs of the two `DocBin`s don't match.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc_bin1 = DocBin(attrs=["LEMMA", "POS"])
|
|
> doc_bin1.add(nlp("Hello world"))
|
|
> doc_bin2 = DocBin(attrs=["LEMMA", "POS"])
|
|
> doc_bin2.add(nlp("This is a sentence"))
|
|
> doc_bin1.merge(doc_bin2)
|
|
> assert len(doc_bin1) == 2
|
|
> ```
|
|
|
|
| Argument | Type | Description |
|
|
| -------- | -------- | ------------------------------------------- |
|
|
| `other` | `DocBin` | The `DocBin` to merge into the current bin. |
|
|
|
|
## DocBin.to_bytes {#to_bytes tag="method"}
|
|
|
|
Serialize the `DocBin`'s annotations to a bytestring.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc_bin = DocBin(attrs=["DEP", "HEAD"])
|
|
> doc_bin_bytes = doc_bin.to_bytes()
|
|
> ```
|
|
|
|
| Argument | Type | Description |
|
|
| ----------- | ----- | ------------------------ |
|
|
| **RETURNS** | bytes | The serialized `DocBin`. |
|
|
|
|
## DocBin.from_bytes {#from_bytes tag="method"}
|
|
|
|
Deserialize the `DocBin`'s annotations from a bytestring.
|
|
|
|
> #### Example
|
|
>
|
|
> ```python
|
|
> doc_bin_bytes = doc_bin.to_bytes()
|
|
> new_doc_bin = DocBin().from_bytes(doc_bin_bytes)
|
|
> ```
|
|
|
|
| Argument | Type | Description |
|
|
| ------------ | -------- | ---------------------- |
|
|
| `bytes_data` | bytes | The data to load from. |
|
|
| **RETURNS** | `DocBin` | The loaded `DocBin`. |
|