mirror of https://github.com/explosion/spaCy.git
514 lines
18 KiB
Markdown
514 lines
18 KiB
Markdown
---
|
||
title: Layers and Model Architectures
|
||
teaser: Power spaCy components with custom neural networks
|
||
menu:
|
||
- ['Type Signatures', 'type-sigs']
|
||
- ['Swapping Architectures', 'swap-architectures']
|
||
- ['PyTorch & TensorFlow', 'frameworks']
|
||
- ['Custom Thinc Models', 'thinc']
|
||
- ['Trainable Components', 'components']
|
||
next: /usage/projects
|
||
---
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from thinc.api import Model, chain
|
||
>
|
||
> @spacy.registry.architectures.register("model.v1")
|
||
> def build_model(width: int, classes: int) -> Model:
|
||
> tok2vec = build_tok2vec(width)
|
||
> output_layer = build_output_layer(width, classes)
|
||
> model = chain(tok2vec, output_layer)
|
||
> return model
|
||
> ```
|
||
|
||
A **model architecture** is a function that wires up a
|
||
[Thinc `Model`](https://thinc.ai/docs/api-model) instance. It describes the
|
||
neural network that is run internally as part of a component in a spaCy
|
||
pipeline. To define the actual architecture, you can implement your logic in
|
||
Thinc directly, or you can use Thinc as a thin wrapper around frameworks such as
|
||
PyTorch, TensorFlow and MXNet. Each `Model` can also be used as a sublayer of a
|
||
larger network, allowing you to freely combine implementations from different
|
||
frameworks into a single model.
|
||
|
||
spaCy's built-in components require a `Model` instance to be passed to them via
|
||
the config system. To change the model architecture of an existing component,
|
||
you just need to [**update the config**](#swap-architectures) so that it refers
|
||
to a different registered function. Once the component has been created from
|
||
this config, you won't be able to change it anymore. The architecture is like a
|
||
recipe for the network, and you can't change the recipe once the dish has
|
||
already been prepared. You have to make a new one.
|
||
|
||
```ini
|
||
### config.cfg (excerpt)
|
||
[components.tagger]
|
||
factory = "tagger"
|
||
|
||
[components.tagger.model]
|
||
@architectures = "model.v1"
|
||
width = 512
|
||
classes = 16
|
||
```
|
||
|
||
## Type signatures {#type-sigs}
|
||
|
||
> #### Example
|
||
>
|
||
> ```python
|
||
> from typing import List
|
||
> from thinc.api import Model, chain
|
||
> from thinc.types import Floats2d
|
||
> def chain_model(
|
||
> tok2vec: Model[List[Doc], List[Floats2d]],
|
||
> layer1: Model[List[Floats2d], Floats2d],
|
||
> layer2: Model[Floats2d, Floats2d]
|
||
> ) -> Model[List[Doc], Floats2d]:
|
||
> model = chain(tok2vec, layer1, layer2)
|
||
> return model
|
||
> ```
|
||
|
||
The Thinc `Model` class is a **generic type** that can specify its input and
|
||
output types. Python uses a square-bracket notation for this, so the type
|
||
~~Model[List, Dict]~~ says that each batch of inputs to the model will be a
|
||
list, and the outputs will be a dictionary. You can be even more specific and
|
||
write for instance~~Model[List[Doc], Dict[str, float]]~~ to specify that the
|
||
model expects a list of [`Doc`](/api/doc) objects as input, and returns a
|
||
dictionary mapping of strings to floats. Some of the most common types you'll
|
||
see are:
|
||
|
||
| Type | Description |
|
||
| ------------------ | ---------------------------------------------------------------------------------------------------- |
|
||
| ~~List[Doc]~~ | A batch of [`Doc`](/api/doc) objects. Most components expect their models to take this as input. |
|
||
| ~~Floats2d~~ | A two-dimensional `numpy` or `cupy` array of floats. Usually 32-bit. |
|
||
| ~~Ints2d~~ | A two-dimensional `numpy` or `cupy` array of integers. Common dtypes include uint64, int32 and int8. |
|
||
| ~~List[Floats2d]~~ | A list of two-dimensional arrays, generally with one array per `Doc` and one row per token. |
|
||
| ~~Ragged~~ | A container to handle variable-length sequence data in an unpadded contiguous array. |
|
||
| ~~Padded~~ | A container to handle variable-length sequence data in a padded contiguous array. |
|
||
|
||
The model type signatures help you figure out which model architectures and
|
||
components can **fit together**. For instance, the
|
||
[`TextCategorizer`](/api/textcategorizer) class expects a model typed
|
||
~~Model[List[Doc], Floats2d]~~, because the model will predict one row of
|
||
category probabilities per [`Doc`](/api/doc). In contrast, the
|
||
[`Tagger`](/api/tagger) class expects a model typed ~~Model[List[Doc],
|
||
List[Floats2d]]~~, because it needs to predict one row of probabilities per
|
||
token.
|
||
|
||
There's no guarantee that two models with the same type signature can be used
|
||
interchangeably. There are many other ways they could be incompatible. However,
|
||
if the types don't match, they almost surely _won't_ be compatible. This little
|
||
bit of validation goes a long way, especially if you
|
||
[configure your editor](https://thinc.ai/docs/usage-type-checking) or other
|
||
tools to highlight these errors early. The config file is also validated at the
|
||
beginning of training, to verify that all the types match correctly.
|
||
|
||
<Accordion title="Tip: Static type checking in your editor">
|
||
|
||
If you're using a modern editor like Visual Studio Code, you can
|
||
[set up `mypy`](https://thinc.ai/docs/usage-type-checking#install) with the
|
||
custom Thinc plugin and get live feedback about mismatched types as you write
|
||
code.
|
||
|
||
[![](../images/thinc_mypy.jpg)](https://thinc.ai/docs/usage-type-checking#linting)
|
||
|
||
</Accordion>
|
||
|
||
## Swapping model architectures {#swap-architectures}
|
||
|
||
If no model is specified for the [`TextCategorizer`](/api/textcategorizer), the
|
||
[TextCatEnsemble](/api/architectures#TextCatEnsemble) architecture is used by
|
||
default. This architecture combines a simple bag-of-words model with a neural
|
||
network, usually resulting in the most accurate results, but at the cost of
|
||
speed. The config file for this model would look something like this:
|
||
|
||
```ini
|
||
### config.cfg (excerpt)
|
||
[components.textcat]
|
||
factory = "textcat"
|
||
labels = []
|
||
|
||
[components.textcat.model]
|
||
@architectures = "spacy.TextCatEnsemble.v1"
|
||
exclusive_classes = false
|
||
pretrained_vectors = null
|
||
width = 64
|
||
conv_depth = 2
|
||
embed_size = 2000
|
||
window_size = 1
|
||
ngram_size = 1
|
||
dropout = 0
|
||
nO = null
|
||
```
|
||
|
||
spaCy has two additional built-in `textcat` architectures, and you can easily
|
||
use those by swapping out the definition of the textcat's model. For instance,
|
||
to use the simple and fast bag-of-words model
|
||
[TextCatBOW](/api/architectures#TextCatBOW), you can change the config to:
|
||
|
||
```ini
|
||
### config.cfg (excerpt) {highlight="6-10"}
|
||
[components.textcat]
|
||
factory = "textcat"
|
||
labels = []
|
||
|
||
[components.textcat.model]
|
||
@architectures = "spacy.TextCatBOW.v1"
|
||
exclusive_classes = false
|
||
ngram_size = 1
|
||
no_output_layer = false
|
||
nO = null
|
||
```
|
||
|
||
For details on all pre-defined architectures shipped with spaCy and how to
|
||
configure them, check out the [model architectures](/api/architectures)
|
||
documentation.
|
||
|
||
### Defining sublayers {#sublayers}
|
||
|
||
Model architecture functions often accept **sublayers as arguments**, so that
|
||
you can try **substituting a different layer** into the network. Depending on
|
||
how the architecture function is structured, you might be able to define your
|
||
network structure entirely through the [config system](/usage/training#config),
|
||
using layers that have already been defined.
|
||
|
||
In most neural network models for NLP, the most important parts of the network
|
||
are what we refer to as the
|
||
[embed and encode](https://explosion.ai/blog/deep-learning-formula-nlp) steps.
|
||
These steps together compute dense, context-sensitive representations of the
|
||
tokens, and their combination forms a typical
|
||
[`Tok2Vec`](/api/architectures#Tok2Vec) layer:
|
||
|
||
```ini
|
||
### config.cfg (excerpt)
|
||
[components.tok2vec]
|
||
factory = "tok2vec"
|
||
|
||
[components.tok2vec.model]
|
||
@architectures = "spacy.Tok2Vec.v1"
|
||
|
||
[components.tok2vec.model.embed]
|
||
@architectures = "spacy.MultiHashEmbed.v1"
|
||
# ...
|
||
|
||
[components.tok2vec.model.encode]
|
||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||
# ...
|
||
```
|
||
|
||
By defining these sublayers specifically, it becomes straightforward to swap out
|
||
a sublayer for another one, for instance changing the first sublayer to a
|
||
character embedding with the [CharacterEmbed](/api/architectures#CharacterEmbed)
|
||
architecture:
|
||
|
||
```ini
|
||
### config.cfg (excerpt)
|
||
[components.tok2vec.model.embed]
|
||
@architectures = "spacy.CharacterEmbed.v1"
|
||
# ...
|
||
|
||
[components.tok2vec.model.encode]
|
||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||
# ...
|
||
```
|
||
|
||
Most of spaCy's default architectures accept a `tok2vec` layer as a sublayer
|
||
within the larger task-specific neural network. This makes it easy to **switch
|
||
between** transformer, CNN, BiLSTM or other feature extraction approaches. The
|
||
[transformers documentation](/usage/embeddings-transformers#training-custom-model)
|
||
section shows an example of swapping out a model's standard `tok2vec` layer with
|
||
a transformer. And if you want to define your own solution, all you need to do
|
||
is register a ~~Model[List[Doc], List[Floats2d]]~~ architecture function, and
|
||
you'll be able to try it out in any of the spaCy components.
|
||
|
||
## Wrapping PyTorch, TensorFlow and other frameworks {#frameworks}
|
||
|
||
Thinc allows you to [wrap models](https://thinc.ai/docs/usage-frameworks)
|
||
written in other machine learning frameworks like PyTorch, TensorFlow and MXNet
|
||
using a unified [`Model`](https://thinc.ai/docs/api-model) API. This makes it
|
||
easy to use a model implemented in a different framework to power a component in
|
||
your spaCy pipeline. For example, to wrap a PyTorch model as a Thinc `Model`,
|
||
you can use Thinc's
|
||
[`PyTorchWrapper`](https://thinc.ai/docs/api-layers#pytorchwrapper):
|
||
|
||
```python
|
||
from thinc.api import PyTorchWrapper
|
||
|
||
wrapped_pt_model = PyTorchWrapper(torch_model)
|
||
```
|
||
|
||
Let's use PyTorch to define a very simple neural network consisting of two
|
||
hidden `Linear` layers with `ReLU` activation and dropout, and a
|
||
softmax-activated output layer:
|
||
|
||
```python
|
||
### PyTorch model
|
||
from torch import nn
|
||
|
||
torch_model = nn.Sequential(
|
||
nn.Linear(width, hidden_width),
|
||
nn.ReLU(),
|
||
nn.Dropout2d(dropout),
|
||
nn.Linear(hidden_width, nO),
|
||
nn.ReLU(),
|
||
nn.Dropout2d(dropout),
|
||
nn.Softmax(dim=1)
|
||
)
|
||
```
|
||
|
||
The resulting wrapped `Model` can be used as a **custom architecture** as such,
|
||
or can be a **subcomponent of a larger model**. For instance, we can use Thinc's
|
||
[`chain`](https://thinc.ai/docs/api-layers#chain) combinator, which works like
|
||
`Sequential` in PyTorch, to combine the wrapped model with other components in a
|
||
larger network. This effectively means that you can easily wrap different
|
||
components from different frameworks, and "glue" them together with Thinc:
|
||
|
||
```python
|
||
from thinc.api import chain, with_array, PyTorchWrapper
|
||
from spacy.ml import CharacterEmbed
|
||
|
||
wrapped_pt_model = PyTorchWrapper(torch_model)
|
||
char_embed = CharacterEmbed(width, embed_size, nM, nC)
|
||
model = chain(char_embed, with_array(wrapped_pt_model))
|
||
```
|
||
|
||
In the above example, we have combined our custom PyTorch model with a character
|
||
embedding layer defined by spaCy.
|
||
[CharacterEmbed](/api/architectures#CharacterEmbed) returns a `Model` that takes
|
||
a ~~List[Doc]~~ as input, and outputs a ~~List[Floats2d]~~. To make sure that
|
||
the wrapped PyTorch model receives valid inputs, we use Thinc's
|
||
[`with_array`](https://thinc.ai/docs/api-layers#with_array) helper.
|
||
|
||
You could also implement a model that only uses PyTorch for the transformer
|
||
layers, and "native" Thinc layers to do fiddly input and output transformations
|
||
and add on task-specific "heads", as efficiency is less of a consideration for
|
||
those parts of the network.
|
||
|
||
### Using wrapped models {#frameworks-usage}
|
||
|
||
To use our custom model including the PyTorch subnetwork, all we need to do is
|
||
register the architecture using the
|
||
[`architectures` registry](/api/top-level#registry). This will assign the
|
||
architecture a name so spaCy knows how to find it, and allows passing in
|
||
arguments like hyperparameters via the [config](/usage/training#config). The
|
||
full example then becomes:
|
||
|
||
```python
|
||
### Registering the architecture {highlight="9"}
|
||
from typing import List
|
||
from thinc.types import Floats2d
|
||
from thinc.api import Model, PyTorchWrapper, chain, with_array
|
||
import spacy
|
||
from spacy.tokens.doc import Doc
|
||
from spacy.ml import CharacterEmbed
|
||
from torch import nn
|
||
|
||
@spacy.registry.architectures("CustomTorchModel.v1")
|
||
def create_torch_model(
|
||
nO: int,
|
||
width: int,
|
||
hidden_width: int,
|
||
embed_size: int,
|
||
nM: int,
|
||
nC: int,
|
||
dropout: float,
|
||
) -> Model[List[Doc], List[Floats2d]]:
|
||
char_embed = CharacterEmbed(width, embed_size, nM, nC)
|
||
torch_model = nn.Sequential(
|
||
nn.Linear(width, hidden_width),
|
||
nn.ReLU(),
|
||
nn.Dropout2d(dropout),
|
||
nn.Linear(hidden_width, nO),
|
||
nn.ReLU(),
|
||
nn.Dropout2d(dropout),
|
||
nn.Softmax(dim=1)
|
||
)
|
||
wrapped_pt_model = PyTorchWrapper(torch_model)
|
||
model = chain(char_embed, with_array(wrapped_pt_model))
|
||
return model
|
||
```
|
||
|
||
The model definition can now be used in any existing trainable spaCy component,
|
||
by specifying it in the config file. In this configuration, all required
|
||
parameters for the various subcomponents of the custom architecture are passed
|
||
in as settings via the config.
|
||
|
||
```ini
|
||
### config.cfg (excerpt) {highlight="5-5"}
|
||
[components.tagger]
|
||
factory = "tagger"
|
||
|
||
[components.tagger.model]
|
||
@architectures = "CustomTorchModel.v1"
|
||
nO = 50
|
||
width = 96
|
||
hidden_width = 48
|
||
embed_size = 2000
|
||
nM = 64
|
||
nC = 8
|
||
dropout = 0.2
|
||
```
|
||
|
||
<Infobox variant="warning">
|
||
|
||
Remember that it is best not to rely on any (hidden) default values, to ensure
|
||
that training configs are complete and experiments fully reproducible.
|
||
|
||
</Infobox>
|
||
|
||
Note that when using a PyTorch or Tensorflow model, it is recommended to set the
|
||
GPU memory allocator accordingly. When `gpu_allocator` is set to "pytorch" or
|
||
"tensorflow" in the training config, cupy will allocate memory via those
|
||
respective libraries, preventing OOM errors when there's available memory
|
||
sitting in the other library's pool.
|
||
|
||
```ini
|
||
### config.cfg (excerpt)
|
||
[training]
|
||
gpu_allocator = "pytorch"
|
||
```
|
||
|
||
## Custom models with Thinc {#thinc}
|
||
|
||
Of course it's also possible to define the `Model` from the previous section
|
||
entirely in Thinc. The Thinc documentation provides details on the
|
||
[various layers](https://thinc.ai/docs/api-layers) and helper functions
|
||
available. Combinators can also be used to
|
||
[overload operators](https://thinc.ai/docs/usage-models#operators) and a common
|
||
usage pattern is to bind `chain` to `>>`. The "native" Thinc version of our
|
||
simple neural network would then become:
|
||
|
||
```python
|
||
from thinc.api import chain, with_array, Model, Relu, Dropout, Softmax
|
||
from spacy.ml import CharacterEmbed
|
||
|
||
char_embed = CharacterEmbed(width, embed_size, nM, nC)
|
||
with Model.define_operators({">>": chain}):
|
||
layers = (
|
||
Relu(hidden_width, width)
|
||
>> Dropout(dropout)
|
||
>> Relu(hidden_width, hidden_width)
|
||
>> Dropout(dropout)
|
||
>> Softmax(nO, hidden_width)
|
||
)
|
||
model = char_embed >> with_array(layers)
|
||
```
|
||
|
||
<Infobox variant="warning" title="Important note on inputs and outputs">
|
||
|
||
Note that Thinc layers define the output dimension (`nO`) as the first argument,
|
||
followed (optionally) by the input dimension (`nI`). This is in contrast to how
|
||
the PyTorch layers are defined, where `in_features` precedes `out_features`.
|
||
|
||
</Infobox>
|
||
|
||
### Shape inference in Thinc {#thinc-shape-inference}
|
||
|
||
It is **not** strictly necessary to define all the input and output dimensions
|
||
for each layer, as Thinc can perform
|
||
[shape inference](https://thinc.ai/docs/usage-models#validation) between
|
||
sequential layers by matching up the output dimensionality of one layer to the
|
||
input dimensionality of the next. This means that we can simplify the `layers`
|
||
definition:
|
||
|
||
> #### Diff
|
||
>
|
||
> ```diff
|
||
> layers = (
|
||
> Relu(hidden_width, width)
|
||
> >> Dropout(dropout)
|
||
> - >> Relu(hidden_width, hidden_width)
|
||
> + >> Relu(hidden_width)
|
||
> >> Dropout(dropout)
|
||
> - >> Softmax(nO, hidden_width)
|
||
> + >> Softmax(nO)
|
||
> )
|
||
> ```
|
||
|
||
```python
|
||
with Model.define_operators({">>": chain}):
|
||
layers = (
|
||
Relu(hidden_width, width)
|
||
>> Dropout(dropout)
|
||
>> Relu(hidden_width)
|
||
>> Dropout(dropout)
|
||
>> Softmax(nO)
|
||
)
|
||
```
|
||
|
||
Thinc can even go one step further and **deduce the correct input dimension** of
|
||
the first layer, and output dimension of the last. To enable this functionality,
|
||
you have to call
|
||
[`Model.initialize`](https://thinc.ai/docs/api-model#initialize) with an **input
|
||
sample** `X` and an **output sample** `Y` with the correct dimensions:
|
||
|
||
```python
|
||
### Shape inference with initialization {highlight="3,7,10"}
|
||
with Model.define_operators({">>": chain}):
|
||
layers = (
|
||
Relu(hidden_width)
|
||
>> Dropout(dropout)
|
||
>> Relu(hidden_width)
|
||
>> Dropout(dropout)
|
||
>> Softmax()
|
||
)
|
||
model = char_embed >> with_array(layers)
|
||
model.initialize(X=input_sample, Y=output_sample)
|
||
```
|
||
|
||
The built-in [pipeline components](/usage/processing-pipelines) in spaCy ensure
|
||
that their internal models are **always initialized** with appropriate sample
|
||
data. In this case, `X` is typically a ~~List[Doc]~~, while `Y` is typically a
|
||
~~List[Array1d]~~ or ~~List[Array2d]~~, depending on the specific task. This
|
||
functionality is triggered when [`nlp.initialize`](/api/language#initialize) is
|
||
called.
|
||
|
||
### Dropout and normalization in Thinc {#thinc-dropout-norm}
|
||
|
||
Many of the available Thinc [layers](https://thinc.ai/docs/api-layers) allow you
|
||
to define a `dropout` argument that will result in "chaining" an additional
|
||
[`Dropout`](https://thinc.ai/docs/api-layers#dropout) layer. Optionally, you can
|
||
often specify whether or not you want to add layer normalization, which would
|
||
result in an additional
|
||
[`LayerNorm`](https://thinc.ai/docs/api-layers#layernorm) layer. That means that
|
||
the following `layers` definition is equivalent to the previous:
|
||
|
||
```python
|
||
with Model.define_operators({">>": chain}):
|
||
layers = (
|
||
Relu(hidden_width, dropout=dropout, normalize=False)
|
||
>> Relu(hidden_width, dropout=dropout, normalize=False)
|
||
>> Softmax()
|
||
)
|
||
model = char_embed >> with_array(layers)
|
||
model.initialize(X=input_sample, Y=output_sample)
|
||
```
|
||
|
||
## Create new trainable components {#components}
|
||
|
||
<Infobox title="This section is still under construction" emoji="🚧" variant="warning">
|
||
</Infobox>
|
||
|
||
<!-- TODO: write trainable component section
|
||
- Interaction with `predict`, `get_loss` and `set_annotations`
|
||
- Initialization life-cycle with `initialize`, correlation with add_label
|
||
Example: relation extraction component (implemented as project template)
|
||
Avoid duplication with usage/processing-pipelines#trainable-components ?
|
||
-->
|
||
|
||
<!-- ![Diagram of a pipeline component with its model](../images/layers-architectures.svg)
|
||
|
||
```python
|
||
def update(self, examples):
|
||
docs = [ex.predicted for ex in examples]
|
||
refs = [ex.reference for ex in examples]
|
||
predictions, backprop = self.model.begin_update(docs)
|
||
gradient = self.get_loss(predictions, refs)
|
||
backprop(gradient)
|
||
|
||
def __call__(self, doc):
|
||
predictions = self.model([doc])
|
||
self.set_annotations(predictions)
|
||
```
|
||
-->
|