18 KiB
title | tag | source | new |
---|---|---|---|
TextCategorizer | class | spacy/pipeline/pipes.pyx | 2 |
This class is a subclass of Pipe
and follows the same API. The pipeline
component is available in the processing pipeline
via the ID "textcat"
.
TextCategorizer.Model
Initialize a model for the pipe. The model should implement the
thinc.neural.Model
API. Wrappers are under development for most major machine
learning libraries.
Name | Type | Description |
---|---|---|
**kwargs |
- | Parameters for initializing the model |
RETURNS | object | The initialized model. |
TextCategorizer.__init__
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
nlp.create_pipe
.
Example
# Construction via create_pipe textcat = nlp.create_pipe("textcat") textcat = nlp.create_pipe("textcat", config={"exclusive_classes": True}) # Construction from class from spacy.pipeline import TextCategorizer textcat = TextCategorizer(nlp.vocab, textcat_model) textcat.from_disk("/path/to/model")
Name | Type | Description |
---|---|---|
vocab |
Vocab |
The shared vocabulary. |
model |
Model |
The Model powering the pipeline component. |
**cfg |
- | Configuration parameters. |
RETURNS | TextCategorizer |
The newly constructed object. |
Architectures
Text classification models can be used to solve a wide variety of problems.
Differences in text length, number of labels, difficulty, and runtime
performance constraints mean that no single algorithm performs well on all types
of problems. To handle a wider variety of problems, the TextCategorizer
object
allows configuration of its model architecture, using the architecture
keyword
argument.
Name | Description |
---|---|
"ensemble" |
Default: Stacked ensemble of a bag-of-words model and a neural network model. The neural network uses a CNN with mean pooling and attention. The "ngram_size" and "attr" arguments can be used to configure the feature extraction for the bag-of-words model. |
"simple_cnn" |
A neural network model where token vectors are calculated using a CNN. The vectors are mean pooled and used as features in a feed-forward network. This architecture is usually less accurate than the ensemble, but runs faster. |
"bow" |
An ngram "bag-of-words" model. This architecture should run much faster than the others, but may not be as accurate, especially if texts are short. The features extracted can be controlled using the keyword arguments ngram_size and attr . For instance, ngram_size=3 and attr="lower" would give lower-cased unigram, trigram and bigram features. 2, 3 or 4 are usually good choices of ngram size. |
TextCategorizer.__call__
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the nlp
object is called on a text
and all pipeline components are applied to the Doc
in order. Both
__call__
and pipe
delegate to the predict
and
set_annotations
methods.
Example
textcat = TextCategorizer(nlp.vocab) doc = nlp("This is a sentence.") # This usually happens under the hood processed = textcat(doc)
Name | Type | Description |
---|---|---|
doc |
Doc |
The document to process. |
RETURNS | Doc |
The processed document. |
TextCategorizer.pipe
Apply the pipe to a stream of documents. This usually happens under the hood
when the nlp
object is called on a text and all pipeline components are
applied to the Doc
in order. Both __call__
and
pipe
delegate to the
predict
and
set_annotations
methods.
Example
textcat = TextCategorizer(nlp.vocab) for doc in textcat.pipe(docs, batch_size=50): pass
Name | Type | Description |
---|---|---|
stream |
iterable | A stream of documents. |
batch_size |
int | The number of texts to buffer. Defaults to 128 . |
YIELDS | Doc |
Processed documents in the order of the original text. |
TextCategorizer.predict
Apply the pipeline's model to a batch of docs, without modifying them.
Example
textcat = TextCategorizer(nlp.vocab) scores, tensors = textcat.predict([doc1, doc2])
Name | Type | Description |
---|---|---|
docs |
iterable | The documents to predict. |
RETURNS | tuple | A (scores, tensors) tuple where scores is the model's prediction for each document and tensors is the token representations used to predict the scores. Each tensor is an array with one row for each token in the document. |
TextCategorizer.set_annotations
Modify a batch of documents, using pre-computed scores.
Example
textcat = TextCategorizer(nlp.vocab) scores, tensors = textcat.predict([doc1, doc2]) textcat.set_annotations([doc1, doc2], scores, tensors)
Name | Type | Description |
---|---|---|
docs |
iterable | The documents to modify. |
scores |
- | The scores to set, produced by TextCategorizer.predict . |
tensors |
iterable | The token representations used to predict the scores. |
TextCategorizer.update
Learn from a batch of documents and gold-standard information, updating the
pipe's model. Delegates to predict
and
get_loss
.
Example
textcat = TextCategorizer(nlp.vocab, textcat_model) losses = {} optimizer = nlp.begin_training() textcat.update(examples, losses=losses, sgd=optimizer)
Name | Type | Description |
---|---|---|
examples |
Iterable[Example] |
A batch of Example objects to learn from. |
keyword-only | ||
drop |
float | The dropout rate. |
set_annotations |
bool | Whether or not to update the Example objects with the predictions, delegating to set_annotations . |
sgd |
Optimizer |
The Optimizer object. |
losses |
Dict[str, float] |
Optional record of the loss during training. The value keyed by the model's name is updated. |
TextCategorizer.get_loss
Find the loss and gradient of loss for the batch of documents and their predicted scores.
Example
textcat = TextCategorizer(nlp.vocab) scores = textcat.predict([doc1, doc2]) loss, d_loss = textcat.get_loss([doc1, doc2], [gold1, gold2], scores)
Name | Type | Description |
---|---|---|
docs |
iterable | The batch of documents. |
golds |
iterable | The gold-standard data. Must have the same length as docs . |
scores |
- | Scores representing the model's predictions. |
RETURNS | tuple | The loss and the gradient, i.e. (loss, gradient) . |
TextCategorizer.begin_training
Initialize the pipe for training, using data examples if available. Return an
Optimizer
object.
Example
textcat = TextCategorizer(nlp.vocab) nlp.pipeline.append(textcat) optimizer = textcat.begin_training(pipeline=nlp.pipeline)
Name | Type | Description |
---|---|---|
get_examples |
Iterable[Example] |
Optional gold-standard annotations in the form of Example objects. |
pipeline |
List[(str, callable)] |
Optional list of pipeline components that this component is part of. |
sgd |
Optimizer |
An optional Optimizer object. Will be created via create_optimizer if not set. |
RETURNS | Optimizer |
An optimizer. |
TextCategorizer.create_optimizer
Create an optimizer for the pipeline component.
Example
textcat = TextCategorizer(nlp.vocab) optimizer = textcat.create_optimizer()
Name | Type | Description |
---|---|---|
RETURNS | callable | The optimizer. |
TextCategorizer.use_params
Modify the pipe's model, to use the given parameter values.
Example
textcat = TextCategorizer(nlp.vocab) with textcat.use_params(optimizer.averages): textcat.to_disk("/best_model")
Name | Type | Description |
---|---|---|
params |
dict | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
TextCategorizer.add_label
Add a new label to the pipe.
Example
textcat = TextCategorizer(nlp.vocab) textcat.add_label("MY_LABEL")
Name | Type | Description |
---|---|---|
label |
str | The label to add. |
TextCategorizer.to_disk
Serialize the pipe to disk.
Example
textcat = TextCategorizer(nlp.vocab) textcat.to_disk("/path/to/textcat")
Name | Type | Description |
---|---|---|
path |
str / Path |
A path to a directory, which will be created if it doesn't exist. Paths may be either strings or Path -like objects. |
exclude |
list | String names of serialization fields to exclude. |
TextCategorizer.from_disk
Load the pipe from disk. Modifies the object in place and returns it.
Example
textcat = TextCategorizer(nlp.vocab) textcat.from_disk("/path/to/textcat")
Name | Type | Description |
---|---|---|
path |
str / Path |
A path to a directory. Paths may be either strings or Path -like objects. |
exclude |
list | String names of serialization fields to exclude. |
RETURNS | TextCategorizer |
The modified TextCategorizer object. |
TextCategorizer.to_bytes
Example
textcat = TextCategorizer(nlp.vocab) textcat_bytes = textcat.to_bytes()
Serialize the pipe to a bytestring.
Name | Type | Description |
---|---|---|
exclude |
list | String names of serialization fields to exclude. |
RETURNS | bytes | The serialized form of the TextCategorizer object. |
TextCategorizer.from_bytes
Load the pipe from a bytestring. Modifies the object in place and returns it.
Example
textcat_bytes = textcat.to_bytes() textcat = TextCategorizer(nlp.vocab) textcat.from_bytes(textcat_bytes)
Name | Type | Description |
---|---|---|
bytes_data |
bytes | The data to load from. |
exclude |
list | String names of serialization fields to exclude. |
RETURNS | TextCategorizer |
The TextCategorizer object. |
TextCategorizer.labels
The labels currently added to the component.
Example
textcat.add_label("MY_LABEL") assert "MY_LABEL" in textcat.labels
Name | Type | Description |
---|---|---|
RETURNS | tuple | The labels added to the component. |
Serialization fields
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the exclude
argument.
Example
data = textcat.to_disk("/path", exclude=["vocab"])
Name | Description |
---|---|
vocab |
The shared Vocab . |
cfg |
The config file. You usually don't want to exclude this. |
model |
The binary model data. You usually don't want to exclude this. |