Commit Graph

304 Commits

Author SHA1 Message Date
svlandeg c6ca8649d7 first stab at model - not functional yet 2019-05-09 17:23:19 +02:00
svlandeg 9f33732b96 using entity descriptions and article texts as input embedding vectors for training 2019-05-07 16:03:42 +02:00
svlandeg 7e348d7f7f baseline evaluation using highest-freq candidate 2019-05-06 15:13:50 +02:00
svlandeg 6961215578 refactor code to separate functionality into different files 2019-05-06 10:56:56 +02:00
svlandeg f5190267e7 run only 100M of WP data as training dataset (9%) 2019-05-03 18:09:09 +02:00
svlandeg 4e929600e5 fix WP id parsing, speed up processing and remove ambiguous strings in one doc (for now) 2019-05-03 17:37:47 +02:00
svlandeg 34600c92bd try catch per article to ensure the pipeline goes on 2019-05-03 15:10:09 +02:00
svlandeg bbcb9da466 creating training data with clean WP texts and QID entities true/false 2019-05-03 10:44:29 +02:00
svlandeg cba9680d13 run NER on clean WP text and link to gold-standard entity IDs 2019-05-02 17:24:52 +02:00
svlandeg 581dc9742d parsing clean text from WP articles to use as input data for NER and NEL 2019-05-02 17:09:56 +02:00
svlandeg 8353552191 cleanup 2019-05-01 23:26:16 +02:00
svlandeg 1ae41daaa9 allow small rounding errors 2019-05-01 23:05:40 +02:00
svlandeg 3629a52ede reading all persons in wikidata 2019-05-01 01:00:59 +02:00
svlandeg 60b54ae8ce bulk entity writing and experiment with regex wikidata reader to speed up processing 2019-05-01 00:00:38 +02:00
svlandeg 653b7d9c87 calculate entity raw counts offline to speed up KB construction 2019-04-30 11:39:42 +02:00
svlandeg 19e8f339cb deduce entity freq from WP corpus and serialize vocab in WP test 2019-04-29 17:37:29 +02:00
svlandeg 54d0cea062 unit test for KB serialization 2019-04-24 23:52:34 +02:00
svlandeg 3e0cb69065 KB aliases to and from file 2019-04-24 20:24:24 +02:00
svlandeg ad6c5e581c writing and reading number of entries to/from header 2019-04-24 15:31:44 +02:00
svlandeg 6e3223f234 bulk loading in proper order of entity indices 2019-04-24 11:26:38 +02:00
svlandeg 694fea597a dumping all entryC entries + (inefficient) reading back in 2019-04-23 18:36:50 +02:00
svlandeg 8e70a564f1 custom reader and writer for _EntryC fields (first stab at it - not complete) 2019-04-23 16:33:40 +02:00
svlandeg 004e5e7d1c little fixes 2019-04-19 14:24:02 +02:00
svlandeg 9a8197185b fix alias capitalization 2019-04-18 22:37:50 +02:00
svlandeg 9f308eb5dc fixes for prior prob and linking wikidata IDs with wikipedia titles 2019-04-18 16:14:25 +02:00
svlandeg 10ee8dfea2 poc with few entities and collecting aliases from the WP links 2019-04-18 14:12:17 +02:00
svlandeg 6763e025e1 parse wp dump for links to determine prior probabilities 2019-04-15 11:41:57 +02:00
svlandeg 3163331b1e wikipedia dump parser and mediawiki format regex cleanup 2019-04-14 21:52:01 +02:00
svlandeg b31a390a9a reading types, claims and sitelinks 2019-04-11 21:42:44 +02:00
svlandeg 6e997be4b4 reading wikidata descriptions and aliases 2019-04-11 21:08:22 +02:00
svlandeg 9a7d534b1b enable nogil for cython functions in kb.pxd 2019-04-10 17:25:10 +02:00
Ines Montani 24cecdb44f Update compatibility [ci skip] 2019-04-01 16:25:16 +02:00
Sofie a4a6bfa4e1
Merge branch 'master' into feature/el-framework 2019-03-26 11:00:02 +01:00
svlandeg 8814b9010d entity as one field instead of both ID and name 2019-03-25 18:10:41 +01:00
Matthew Honnibal 6c783f8045 Bug fixes and options for TextCategorizer (#3472)
* Fix code for bag-of-words feature extraction

The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).

* Support 'bow' architecture for TextCategorizer

This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.

* Fix size limits in train_textcat example

* Explain architectures better in docs
2019-03-23 16:44:44 +01:00
svlandeg 9de9900510 adding future import unicode literals to .py files 2019-03-22 16:18:04 +01:00
Matthew Honnibal 4c5f265884
Fix train loop for train_textcat example 2019-03-22 16:10:11 +01:00
svlandeg 5318ce88fa 'entity_linker' instead of 'el' 2019-03-22 13:55:10 +01:00
svlandeg a48241e9a2 use nlp's vocab for stringstore 2019-03-22 11:36:45 +01:00
svlandeg 1ee0e78fd7 select candidate with highest prior probabiity 2019-03-22 11:36:45 +01:00
Matthew Honnibal 4e3ed2ea88 Add -t2v argument to train_textcat script 2019-03-20 23:05:42 +01:00
Ines Montani 399987c216 Test and update examples [ci skip] 2019-03-16 14:15:49 +01:00
Ines Montani cb5dbfa63a Tidy up references to n_threads and fix default 2019-03-15 16:24:26 +01:00
Matthew Honnibal 4dc57d9e15 Update train_new_entity_type example 2019-02-24 16:41:03 +01:00
Matthew Honnibal 7ac0f9626c Update rehearsal example 2019-02-24 16:17:41 +01:00
Matthew Honnibal 981cb89194 Fix f-score calculation if zero 2019-02-23 12:45:41 +01:00
Matthew Honnibal 5063d999e5 Set architecture in textcat example 2019-02-23 11:57:59 +01:00
Matthew Honnibal 582be8746c Update multi_processing example 2019-02-21 10:33:16 +01:00
Ines Montani 9696cf16c1 Merge branch 'master' into develop 2019-02-20 21:31:27 +01:00
Michael Liberman 386cec1979 - Json fix in comment (#3294) 2019-02-19 18:01:35 +01:00