little fixes

This commit is contained in:
svlandeg 2019-04-19 14:24:02 +02:00
parent 9a8197185b
commit 004e5e7d1c
1 changed files with 37 additions and 25 deletions

View File

@ -35,34 +35,46 @@ wiki_namespaces = ["b", "betawikiversity", "Book", "c", "Category", "Commons",
map_alias_to_link = dict()
def create_kb(vocab, max_entities_per_alias, min_occ):
def create_kb(vocab, max_entities_per_alias, min_occ, to_print=False):
kb = KnowledgeBase(vocab=vocab)
id_to_title = _read_wikidata(limit=100, to_print=False)
id_to_title = _read_wikidata(limit=1000)
title_to_id = {v:k for k,v in id_to_title.items()}
_add_entities(kb, entities=id_to_title.keys(), probs=[0.4 for x in id_to_title.keys()])
_add_aliases(kb, title_to_id=title_to_id, max_entities_per_alias=max_entities_per_alias, min_occ=min_occ)
_add_entities(kb,
entities=id_to_title.keys(),
probs=[0.4 for x in id_to_title.keys()],
to_print=to_print)
_add_aliases(kb,
title_to_id=title_to_id,
max_entities_per_alias=max_entities_per_alias,
min_occ=min_occ,
to_print=to_print)
# TODO: read wikipedia texts for entity context
# _read_wikipedia()
print()
print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases())
if to_print:
print()
print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases())
return kb
def _add_entities(kb, entities, probs):
def _add_entities(kb, entities, probs, to_print=False):
for entity, prob in zip(entities, probs):
kb.add_entity(entity=entity, prob=prob)
print("added", kb.get_size_entities(), "entities:", kb.get_entity_strings())
if to_print:
print("added", kb.get_size_entities(), "entities:", kb.get_entity_strings())
def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ):
def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, to_print=False):
wp_titles = title_to_id.keys()
print("wp titles", wp_titles)
if to_print:
print("wp titles", wp_titles)
# adding aliases with prior probabilities
with open(PRIOR_PROB, mode='r', encoding='utf8') as prior_file:
@ -94,9 +106,6 @@ def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ):
if selected_entities:
kb.add_alias(alias=previous_alias, entities=selected_entities, probabilities=prior_probs)
print("analysed", previous_alias, "with entities", entities, "and counts", counts)
print("added", previous_alias, "with selected entities", selected_entities, "and probs", prior_probs)
print()
total_count = 0
counts = list()
entities = list()
@ -110,8 +119,8 @@ def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ):
line = prior_file.readline()
print()
print("added", kb.get_size_aliases(), "aliases:", kb.get_alias_strings())
if to_print:
print("added", kb.get_size_aliases(), "aliases:", kb.get_alias_strings())
def _read_wikidata(limit=None, to_print=False):
@ -141,7 +150,7 @@ def _read_wikidata(limit=None, to_print=False):
claim_property = claims.get(prop, None)
if claim_property:
for cp in claim_property:
cp_id = cp['mainsnak']['datavalue']['value']['id']
cp_id = cp['mainsnak'].get('datavalue', {}).get('value', {}).get('id')
if cp_id in value_set:
keep = True
@ -383,7 +392,7 @@ def add_el(kb, nlp):
text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \
"Douglas reminds us to always bring our towel. " \
"The main character in Doug's novel is called Arthur Dent."
"The main character in Doug's novel is the man Arthur Dent, but Douglas doesn't write about George Washington."
doc = nlp(text)
print()
@ -406,14 +415,17 @@ def capitalize_first(text):
if __name__ == "__main__":
# STEP 1 : create prior probabilities from WP
# run only once !
_read_wikipedia_prior_probs()
# _read_wikipedia_prior_probs()
# STEP 2 : create KB
# nlp = spacy.load('en_core_web_sm')
# my_kb = create_kb(nlp.vocab, max_entities_per_alias=10, min_occ=5)
# add_el(my_kb, nlp)
nlp = spacy.load('en_core_web_sm')
my_kb = create_kb(nlp.vocab, max_entities_per_alias=10, min_occ=5, to_print=True)
# clean_text = "[[File:smomething]] jhk"
# clean_text = re.sub(r'\[\[Category:[^\[]*]]', '', clean_text)
# clean_text = re.sub(r'\[\[File:[^\[]*]]', '', clean_text)
# print(clean_text)
# STEP 3 : write KB to file
# TODO
# STEP 4 : read KB back in from file
# TODO
# STEP 5 : actually use the EL functionality
add_el(my_kb, nlp)