svlandeg
|
9abbd0899f
|
separate entity encoder to get 64D descriptions
|
2019-06-05 00:09:46 +02:00 |
svlandeg
|
fb37cdb2d3
|
implementing el pipe in pipes.pyx (not tested yet)
|
2019-06-03 21:32:54 +02:00 |
svlandeg
|
9e88763dab
|
60% acc run
|
2019-06-03 08:04:49 +02:00 |
svlandeg
|
268a52ead7
|
experimenting with cosine sim for negative examples (not OK yet)
|
2019-05-29 16:07:53 +02:00 |
svlandeg
|
a761929fa5
|
context encoder combining sentence and article
|
2019-05-28 18:14:49 +02:00 |
svlandeg
|
992fa92b66
|
refactor again to clusters of entities and cosine similarity
|
2019-05-28 00:05:22 +02:00 |
svlandeg
|
8c4aa076bc
|
small fixes
|
2019-05-27 14:29:38 +02:00 |
svlandeg
|
cfc27d7ff9
|
using Tok2Vec instead
|
2019-05-26 23:39:46 +02:00 |
svlandeg
|
abf9af81c9
|
learn rate en epochs
|
2019-05-24 22:04:25 +02:00 |
svlandeg
|
86ed771e0b
|
adding local sentence encoder
|
2019-05-23 16:59:11 +02:00 |
svlandeg
|
4392c01b7b
|
obtain sentence for each mention
|
2019-05-23 15:37:05 +02:00 |
svlandeg
|
97241a3ed7
|
upsampling and batch processing
|
2019-05-22 23:40:10 +02:00 |
svlandeg
|
1a16490d20
|
update per entity
|
2019-05-22 12:46:40 +02:00 |
svlandeg
|
eb08bdb11f
|
hidden with for encoders
|
2019-05-21 23:42:46 +02:00 |
svlandeg
|
7b13e3d56f
|
undersampling negatives
|
2019-05-21 18:35:10 +02:00 |
svlandeg
|
2fa3fac851
|
fix concat bp and more efficient batch calls
|
2019-05-21 13:43:59 +02:00 |
svlandeg
|
0a15ee4541
|
fix in bp call
|
2019-05-20 23:54:55 +02:00 |
svlandeg
|
89e322a637
|
small fixes
|
2019-05-20 17:20:39 +02:00 |
svlandeg
|
7edb2e1711
|
fix convolution layer
|
2019-05-20 11:58:48 +02:00 |
svlandeg
|
dd691d0053
|
debugging
|
2019-05-17 17:44:11 +02:00 |
svlandeg
|
400b19353d
|
simplify architecture and larger-scale test runs
|
2019-05-17 01:51:18 +02:00 |
svlandeg
|
d51bffe63b
|
clean up code
|
2019-05-16 18:36:15 +02:00 |
svlandeg
|
b5470f3d75
|
various tests, architectures and experiments
|
2019-05-16 18:25:34 +02:00 |
svlandeg
|
9ffe5437ae
|
calculate gradient for entity encoding
|
2019-05-15 02:23:08 +02:00 |
svlandeg
|
2713abc651
|
implement loss function using dot product and prob estimate per candidate cluster
|
2019-05-14 22:55:56 +02:00 |
svlandeg
|
09ed446b20
|
different architecture / settings
|
2019-05-14 08:37:52 +02:00 |
svlandeg
|
4142e8dd1b
|
train and predict per article (saving time for doc encoding)
|
2019-05-13 17:02:34 +02:00 |
svlandeg
|
3b81b00954
|
evaluating on dev set during training
|
2019-05-13 14:26:04 +02:00 |
svlandeg
|
b6d788064a
|
some first experiments with different architectures and metrics
|
2019-05-10 12:53:14 +02:00 |
svlandeg
|
9d089c0410
|
grouping clusters of instances per doc+mention
|
2019-05-09 18:11:49 +02:00 |
svlandeg
|
c6ca8649d7
|
first stab at model - not functional yet
|
2019-05-09 17:23:19 +02:00 |
svlandeg
|
9f33732b96
|
using entity descriptions and article texts as input embedding vectors for training
|
2019-05-07 16:03:42 +02:00 |