mirror of https://github.com/explosion/spaCy.git
evaluating on dev set during training
This commit is contained in:
parent
b6d788064a
commit
3b81b00954
|
@ -70,12 +70,10 @@ def is_dev(file_name):
|
|||
return file_name.endswith("3.txt")
|
||||
|
||||
|
||||
def evaluate(predictions, golds):
|
||||
def evaluate(predictions, golds, to_print=True):
|
||||
if len(predictions) != len(golds):
|
||||
raise ValueError("predictions and gold entities should have the same length")
|
||||
|
||||
print("Evaluating", len(golds), "entities")
|
||||
|
||||
tp = 0
|
||||
fp = 0
|
||||
fn = 0
|
||||
|
@ -89,17 +87,22 @@ def evaluate(predictions, golds):
|
|||
else:
|
||||
fp += 1
|
||||
|
||||
print("tp", tp)
|
||||
print("fp", fp)
|
||||
print("fn", fn)
|
||||
if to_print:
|
||||
print("Evaluating", len(golds), "entities")
|
||||
print("tp", tp)
|
||||
print("fp", fp)
|
||||
print("fn", fn)
|
||||
|
||||
precision = tp / (tp + fp + 0.0000001)
|
||||
recall = tp / (tp + fn + 0.0000001)
|
||||
precision = 100 * tp / (tp + fp + 0.0000001)
|
||||
recall = 100 * tp / (tp + fn + 0.0000001)
|
||||
fscore = 2 * recall * precision / (recall + precision + 0.0000001)
|
||||
|
||||
print("precision", round(100 * precision, 1), "%")
|
||||
print("recall", round(100 * recall, 1), "%")
|
||||
print("Fscore", round(100 * fscore, 1), "%")
|
||||
if to_print:
|
||||
print("precision", round(precision, 1), "%")
|
||||
print("recall", round(recall, 1), "%")
|
||||
print("Fscore", round(fscore, 1), "%")
|
||||
|
||||
return precision, recall, fscore
|
||||
|
||||
|
||||
def _prepare_pipeline(nlp, kb):
|
||||
|
|
|
@ -5,6 +5,7 @@ import os
|
|||
import datetime
|
||||
from os import listdir
|
||||
import numpy as np
|
||||
from random import shuffle
|
||||
|
||||
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
|
||||
|
||||
|
@ -16,6 +17,8 @@ from thinc.t2v import Pooling, sum_pool, mean_pool
|
|||
from thinc.t2t import ExtractWindow, ParametricAttention
|
||||
from thinc.misc import Residual, LayerNorm as LN
|
||||
|
||||
from spacy.tokens import Doc
|
||||
|
||||
""" TODO: this code needs to be implemented in pipes.pyx"""
|
||||
|
||||
|
||||
|
@ -33,34 +36,93 @@ class EL_Model():
|
|||
self.article_encoder = self._simple_encoder(in_width=300, out_width=96)
|
||||
|
||||
def train_model(self, training_dir, entity_descr_output, limit=None, to_print=True):
|
||||
instances, pos_entities, neg_entities, doc_by_article = self._get_training_data(training_dir,
|
||||
entity_descr_output,
|
||||
limit, to_print)
|
||||
Doc.set_extension("entity_id", default=None)
|
||||
|
||||
train_instances, train_pos, train_neg, train_doc = self._get_training_data(training_dir,
|
||||
entity_descr_output,
|
||||
False,
|
||||
limit, to_print)
|
||||
|
||||
dev_instances, dev_pos, dev_neg, dev_doc = self._get_training_data(training_dir,
|
||||
entity_descr_output,
|
||||
True,
|
||||
limit, to_print)
|
||||
|
||||
if to_print:
|
||||
print("Training on", len(instances), "instance clusters")
|
||||
print("Training on", len(train_instances), "instance clusters")
|
||||
print("Dev test on", len(dev_instances), "instance clusters")
|
||||
print()
|
||||
|
||||
self.sgd_entity = self.begin_training(self.entity_encoder)
|
||||
self.sgd_article = self.begin_training(self.article_encoder)
|
||||
|
||||
self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc)
|
||||
|
||||
losses = {}
|
||||
|
||||
for inst_cluster in instances:
|
||||
pos_ex = pos_entities.get(inst_cluster)
|
||||
neg_exs = neg_entities.get(inst_cluster, [])
|
||||
for inst_cluster in train_instances:
|
||||
pos_ex = train_pos.get(inst_cluster)
|
||||
neg_exs = train_neg.get(inst_cluster, [])
|
||||
|
||||
if pos_ex and neg_exs:
|
||||
article = inst_cluster.split(sep="_")[0]
|
||||
entity_id = inst_cluster.split(sep="_")[1]
|
||||
article_doc = doc_by_article[article]
|
||||
article_doc = train_doc[article]
|
||||
self.update(article_doc, pos_ex, neg_exs, losses=losses)
|
||||
p, r, fscore = self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc)
|
||||
print(round(fscore, 1))
|
||||
# TODO
|
||||
# elif not pos_ex:
|
||||
# print("Weird. Couldn't find pos example for", inst_cluster)
|
||||
# elif not neg_exs:
|
||||
# print("Weird. Couldn't find neg examples for", inst_cluster)
|
||||
|
||||
def _test_dev(self, dev_instances, dev_pos, dev_neg, dev_doc):
|
||||
predictions = list()
|
||||
golds = list()
|
||||
|
||||
for inst_cluster in dev_instances:
|
||||
pos_ex = dev_pos.get(inst_cluster)
|
||||
neg_exs = dev_neg.get(inst_cluster, [])
|
||||
ex_to_id = dict()
|
||||
|
||||
if pos_ex and neg_exs:
|
||||
ex_to_id[pos_ex] = pos_ex._.entity_id
|
||||
for neg_ex in neg_exs:
|
||||
ex_to_id[neg_ex] = neg_ex._.entity_id
|
||||
|
||||
article = inst_cluster.split(sep="_")[0]
|
||||
entity_id = inst_cluster.split(sep="_")[1]
|
||||
article_doc = dev_doc[article]
|
||||
|
||||
examples = list(neg_exs)
|
||||
examples.append(pos_ex)
|
||||
shuffle(examples)
|
||||
|
||||
best_entity, lowest_mse = self._predict(examples, article_doc)
|
||||
predictions.append(ex_to_id[best_entity])
|
||||
golds.append(ex_to_id[pos_ex])
|
||||
|
||||
|
||||
# TODO: use lowest_mse and combine with prior probability
|
||||
p, r, F = run_el.evaluate(predictions, golds, to_print=False)
|
||||
return p, r, F
|
||||
|
||||
def _predict(self, entities, article_doc):
|
||||
doc_encoding = self.article_encoder([article_doc])
|
||||
|
||||
lowest_mse = None
|
||||
best_entity = None
|
||||
|
||||
for entity in entities:
|
||||
entity_encoding = self.entity_encoder([entity])
|
||||
mse, _ = self._calculate_similarity(doc_encoding, entity_encoding)
|
||||
if not best_entity or mse < lowest_mse:
|
||||
lowest_mse = mse
|
||||
best_entity = entity
|
||||
|
||||
return best_entity, lowest_mse
|
||||
|
||||
def _simple_encoder(self, in_width, out_width):
|
||||
conv_depth = 1
|
||||
cnn_maxout_pieces = 3
|
||||
|
@ -145,7 +207,7 @@ class EL_Model():
|
|||
# print("true index", true_index)
|
||||
# print("true prob", entity_probs[true_index])
|
||||
|
||||
print(true_mse)
|
||||
# print("training loss", true_mse)
|
||||
|
||||
# print()
|
||||
|
||||
|
@ -198,13 +260,14 @@ class EL_Model():
|
|||
def _get_labels(self):
|
||||
return tuple(self.labels)
|
||||
|
||||
def _get_training_data(self, training_dir, entity_descr_output, limit, to_print):
|
||||
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
|
||||
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
|
||||
|
||||
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
|
||||
collect_correct=True,
|
||||
collect_incorrect=True)
|
||||
|
||||
|
||||
instances = list()
|
||||
local_vectors = list() # TODO: local vectors
|
||||
doc_by_article = dict()
|
||||
|
@ -214,7 +277,7 @@ class EL_Model():
|
|||
cnt = 0
|
||||
for f in listdir(training_dir):
|
||||
if not limit or cnt < limit:
|
||||
if not run_el.is_dev(f):
|
||||
if dev == run_el.is_dev(f):
|
||||
article_id = f.replace(".txt", "")
|
||||
if cnt % 500 == 0 and to_print:
|
||||
print(datetime.datetime.now(), "processed", cnt, "files in the dev dataset")
|
||||
|
@ -230,6 +293,7 @@ class EL_Model():
|
|||
if descr:
|
||||
instances.append(article_id + "_" + mention)
|
||||
doc_descr = self.nlp(descr)
|
||||
doc_descr._.entity_id = entity_pos
|
||||
pos_entities[article_id + "_" + mention] = doc_descr
|
||||
|
||||
for mention, entity_negs in incorrect_entries[article_id].items():
|
||||
|
@ -237,6 +301,7 @@ class EL_Model():
|
|||
descr = id_to_descr.get(entity_neg)
|
||||
if descr:
|
||||
doc_descr = self.nlp(descr)
|
||||
doc_descr._.entity_id = entity_neg
|
||||
descr_list = neg_entities.get(article_id + "_" + mention, [])
|
||||
descr_list.append(doc_descr)
|
||||
neg_entities[article_id + "_" + mention] = descr_list
|
||||
|
|
Loading…
Reference in New Issue