Matthew Honnibal
dad8f09fba
Fix print statements in text classifier example
2017-11-01 16:34:31 +01:00
ines
bfe17b7df1
Fix begin_training if get_gold_tuples is None
2017-11-01 13:14:31 +01:00
ines
0ca152a015
Fix syntax error
2017-11-01 00:43:28 +01:00
ines
4b196fdf7f
Fix formatting
2017-11-01 00:43:22 +01:00
ines
33af6ac69a
Use even smaller examle size
...
100 was still too much, so try 20 instead
2017-10-30 19:46:45 +01:00
ines
f02b0af821
Fix path and use smaller example size
...
500 was too larger and caused laggy rendering
2017-10-30 19:44:35 +01:00
ines
18dde7869a
Update training data docs and add vocab JSONL
2017-10-30 19:40:05 +01:00
ines
b5643d8575
Update intent parser docs and add to usage docs
2017-10-27 04:49:05 +02:00
ines
9dfca0f2f8
Add example for custom intent parser
2017-10-27 03:55:11 +02:00
ines
4d272e25ee
Fix examples
2017-10-27 03:55:04 +02:00
ines
44f83b35bc
Update pipeline component examples to use plac
2017-10-27 02:58:14 +02:00
ines
af28ca1ba0
Move example to pipeline directory
2017-10-27 02:00:01 +02:00
ines
1d69a46cd4
Update multi-processing example and add to docs
2017-10-27 01:58:55 +02:00
ines
4eabaafd66
Update docstring and example
2017-10-27 01:50:44 +02:00
ines
ed69bd69f4
Update parallel tagging example
2017-10-27 01:48:52 +02:00
ines
096a80170d
Remove old example files
2017-10-27 01:48:39 +02:00
ines
a7b9074b4c
Update textcat training example and docs
2017-10-27 00:48:45 +02:00
ines
b61866a2e4
Update textcat example
2017-10-27 00:32:19 +02:00
ines
f81cc0bd1c
Fix usage of disable_pipes
2017-10-27 00:31:30 +02:00
ines
b7b285971f
Update examples README
2017-10-26 18:47:11 +02:00
ines
cc2917c9e8
Update fastText example and add to examples in docs
2017-10-26 18:47:02 +02:00
ines
db843735d3
Remove outdated examples
2017-10-26 18:46:25 +02:00
ines
daed7ff8fe
Update information extraction examples
2017-10-26 18:46:11 +02:00
ines
bca5372fb1
Clean up examples
2017-10-26 17:32:59 +02:00
ines
f57043e6fe
Update docstring
2017-10-26 16:29:08 +02:00
ines
b90e958975
Update tagger and parser examples and add to docs
2017-10-26 16:27:42 +02:00
ines
f1529463a8
Update tagger training example
2017-10-26 16:19:02 +02:00
ines
e44bbb5361
Remove old example
2017-10-26 16:12:41 +02:00
ines
421c3837e8
Fix formatting
2017-10-26 16:11:25 +02:00
ines
4d896171ae
Use plac annotations for arguments
2017-10-26 16:11:20 +02:00
ines
c3b681e5fb
Use plac annotations for arguments and add n_iter
2017-10-26 16:11:05 +02:00
ines
bc2c92f22d
Use plac annotations for arguments
2017-10-26 16:10:56 +02:00
ines
b5c74dbb34
Update parser training example
2017-10-26 15:15:37 +02:00
ines
586b9047fd
Use create_pipe instead of importing the entity recognizer
2017-10-26 15:15:26 +02:00
ines
d425ede7e9
Fix example
2017-10-26 15:15:08 +02:00
ines
9d58673aaf
Update train_ner example for spaCy v2.0
2017-10-26 14:24:12 +02:00
ines
e904075f35
Remove stray print statements
2017-10-26 14:24:00 +02:00
ines
c30258c3a2
Remove old example
2017-10-26 14:23:52 +02:00
ines
615c315d70
Update train_new_entity_type example to use disable_pipes
2017-10-25 14:56:53 +02:00
ines
2b8e7c45e0
Use better training data JSON example
2017-10-24 16:00:56 +02:00
ines
9bf5751064
Pretty-print JSON
2017-10-24 12:22:17 +02:00
ines
6675755005
Add training data JSON example
2017-10-24 12:05:10 +02:00
Jeroen Bobbeldijk
84c6c20d1c
Fix #1444 : fix pipeline logic and wrong paramater in update call
2017-10-22 15:18:36 +02:00
Jeffrey Gerard
5ba970b495
minor cleanup
2017-10-12 12:34:46 -07:00
Jeffrey Gerard
39d3cbfdba
Bugfix example script train_ner_standalone.py, fails after training
2017-10-12 11:39:12 -07:00
ines
f4ae6763b9
Fix consistency of imports from spacy.tokens in examples
2017-10-11 02:30:40 +02:00
Matthew Honnibal
e0a9b02b67
Merge Span._ and Span.as_doc methods
2017-10-09 22:00:15 -05:00
ines
6679117000
Add pipeline component examples
2017-10-10 04:26:06 +02:00
Matthew Honnibal
e79fc41ff8
Merge pull request #1391 from explosion/feature/multilabel-textcat
...
💫 Fix multi-label support for text classification
2017-10-09 04:22:31 +02:00
Matthew Honnibal
563f46f026
Fix multi-label support for text classification
...
The TextCategorizer class is supposed to support multi-label
text classification, and allow training data to contain missing
values.
For this to work, the gradient of the loss should be 0 when labels
are missing. Instead, there was no way to actually denote "missing"
in the GoldParse class, and so the TextCategorizer class treated
the label set within gold.cats as complete.
To fix this, we change GoldParse.cats to be a dict instead of a list.
The GoldParse.cats dict should map to floats, with 1. denoting
'present' and 0. denoting 'absent'. Gradients are zeroed for categories
absent from the gold.cats dict. A nice bonus is that you can also set
values between 0 and 1 for partial membership. You can also set numeric
values, if you're using a text classification model that uses an
appropriate loss function.
Unfortunately this is a breaking change; although the functionality
was only recently introduced and hasn't been properly documented
yet. I've updated the example script accordingly.
2017-10-05 18:43:02 -05:00