Update train_ner example for spaCy v2.0

This commit is contained in:
ines 2017-10-26 14:24:12 +02:00
parent e904075f35
commit 9d58673aaf
1 changed files with 93 additions and 45 deletions

View File

@ -1,13 +1,104 @@
#!/usr/bin/env python
# coding: utf8
"""
Example of training spaCy's named entity recognizer, starting off with an
existing model or a blank model.
For more details, see the documentation:
* Training: https://alpha.spacy.io/usage/training
* NER: https://alpha.spacy.io/usage/linguistic-features#named-entities
Developed for: spaCy 2.0.0a18
Last updated for: spaCy 2.0.0a18
"""
from __future__ import unicode_literals, print_function
import random
from pathlib import Path
from spacy.lang.en import English
import spacy
from spacy.gold import GoldParse, biluo_tags_from_offsets
# training data
TRAIN_DATA = [
('Who is Shaka Khan?', [(7, 17, 'PERSON')]),
('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])
]
def main(model=None, output_dir=None, n_iter=100):
"""Load the model, set up the pipeline and train the entity recognizer.
model (unicode): Model name to start off with. If None, a blank English
Language class is created.
output_dir (unicode / Path): Optional output directory. If None, no model
will be saved.
n_iter (int): Number of iterations during training.
"""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# create the built-in pipeline components and add them to the pipeline
# ner.create_pipe works for built-ins that are registered with spaCy!
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
nlp.add_pipe(ner, last=True)
# function that allows begin_training to get the training data
get_data = lambda: reformat_train_data(nlp.tokenizer, TRAIN_DATA)
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
with nlp.disable_pipes(*other_pipes) as disabled: # only train NER
optimizer = nlp.begin_training(get_data)
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
for raw_text, entity_offsets in TRAIN_DATA:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.update(
[doc], # Batch of Doc objects
[gold], # Batch of GoldParse objects
drop=0.5, # Dropout -- make it harder to memorise data
sgd=optimizer, # Callable to update weights
losses=losses)
print(losses)
# test the trained model
for text, _ in TRAIN_DATA:
doc = nlp(text)
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
for text, _ in TRAIN_DATA:
doc = nlp(text)
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
def reformat_train_data(tokenizer, examples):
"""Reformat data to match JSON format"""
"""Reformat data to match JSON format.
https://alpha.spacy.io/api/annotation#json-input
tokenizer (Tokenizer): Tokenizer to process the raw text.
examples (list): The trainig data.
RETURNS (list): The reformatted training data."""
output = []
for i, (text, entity_offsets) in enumerate(examples):
doc = tokenizer(text)
@ -21,49 +112,6 @@ def reformat_train_data(tokenizer, examples):
return output
def main(model_dir=None):
train_data = [
(
'Who is Shaka Khan?',
[(len('Who is '), len('Who is Shaka Khan'), 'PERSON')]
),
(
'I like London and Berlin.',
[(len('I like '), len('I like London'), 'LOC'),
(len('I like London and '), len('I like London and Berlin'), 'LOC')]
)
]
nlp = English(pipeline=['tensorizer', 'ner'])
get_data = lambda: reformat_train_data(nlp.tokenizer, train_data)
optimizer = nlp.begin_training(get_data)
for itn in range(100):
random.shuffle(train_data)
losses = {}
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.update(
[doc], # Batch of Doc objects
[gold], # Batch of GoldParse objects
drop=0.5, # Dropout -- make it harder to memorise data
sgd=optimizer, # Callable to update weights
losses=losses)
print(losses)
print("Save to", model_dir)
nlp.to_disk(model_dir)
print("Load from", model_dir)
nlp = spacy.lang.en.English(pipeline=['tensorizer', 'ner'])
nlp.from_disk(model_dir)
for raw_text, _ in train_data:
doc = nlp(raw_text)
for word in doc:
print(word.text, word.ent_type_, word.ent_iob_)
if __name__ == '__main__':
import plac
plac.call(main)
# Who "" 2
# is "" 2
# Shaka "" PERSON 3
# Khan "" PERSON 1
# ? "" 2