mirror of https://github.com/explosion/spaCy.git
Update intent parser example
This commit is contained in:
parent
5f43953536
commit
d7016d4050
|
@ -64,7 +64,7 @@ TRAIN_DATA = [
|
||||||
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
||||||
output_dir=("Optional output directory", "option", "o", Path),
|
output_dir=("Optional output directory", "option", "o", Path),
|
||||||
n_iter=("Number of training iterations", "option", "n", int))
|
n_iter=("Number of training iterations", "option", "n", int))
|
||||||
def main(model=None, output_dir=None, n_iter=100):
|
def main(model=None, output_dir=None, n_iter=5):
|
||||||
"""Load the model, set up the pipeline and train the parser."""
|
"""Load the model, set up the pipeline and train the parser."""
|
||||||
if model is not None:
|
if model is not None:
|
||||||
nlp = spacy.load(model) # load existing spaCy model
|
nlp = spacy.load(model) # load existing spaCy model
|
||||||
|
@ -73,20 +73,19 @@ def main(model=None, output_dir=None, n_iter=100):
|
||||||
nlp = spacy.blank('en') # create blank Language class
|
nlp = spacy.blank('en') # create blank Language class
|
||||||
print("Created blank 'en' model")
|
print("Created blank 'en' model")
|
||||||
|
|
||||||
# add the parser to the pipeline if it doesn't exist
|
# We'll use the built-in dependency parser
|
||||||
# nlp.create_pipe works for built-ins that are registered with spaCy
|
# class, but we want to create a fresh instance, and give it a different
|
||||||
if 'parser' not in nlp.pipe_names:
|
# name.
|
||||||
|
if 'parser' in nlp.pipe_names:
|
||||||
|
nlp.remove_pipe('parser')
|
||||||
parser = nlp.create_pipe('parser')
|
parser = nlp.create_pipe('parser')
|
||||||
nlp.add_pipe(parser, first=True)
|
nlp.add_pipe(parser, name='intent-parser', first=True)
|
||||||
# otherwise, get it, so we can add labels to it
|
|
||||||
else:
|
|
||||||
parser = nlp.get_pipe('parser')
|
|
||||||
|
|
||||||
for text, annotations in TRAIN_DATA:
|
for text, annotations in TRAIN_DATA:
|
||||||
for dep in annotations.get('deps', []):
|
for dep in annotations.get('deps', []):
|
||||||
parser.add_label(dep)
|
parser.add_label(dep)
|
||||||
|
|
||||||
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser']
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'intent-parser']
|
||||||
with nlp.disable_pipes(*other_pipes): # only train parser
|
with nlp.disable_pipes(*other_pipes): # only train parser
|
||||||
optimizer = nlp.begin_training()
|
optimizer = nlp.begin_training()
|
||||||
for itn in range(n_iter):
|
for itn in range(n_iter):
|
||||||
|
|
Loading…
Reference in New Issue