mirror of https://github.com/explosion/spaCy.git
150 lines
5.1 KiB
Python
150 lines
5.1 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
"""Using the parser to recognise your own semantics
|
|
|
|
spaCy's parser component can be used to trained to predict any type of tree
|
|
structure over your input text. You can also predict trees over whole documents
|
|
or chat logs, with connections between the sentence-roots used to annotate
|
|
discourse structure. In this example, we'll build a message parser for a common
|
|
"chat intent": finding local businesses. Our message semantics will have the
|
|
following types of relations: ROOT, PLACE, QUALITY, ATTRIBUTE, TIME, LOCATION.
|
|
|
|
"show me the best hotel in berlin"
|
|
('show', 'ROOT', 'show')
|
|
('best', 'QUALITY', 'hotel') --> hotel with QUALITY best
|
|
('hotel', 'PLACE', 'show') --> show PLACE hotel
|
|
('berlin', 'LOCATION', 'hotel') --> hotel with LOCATION berlin
|
|
|
|
Developed for: spaCy 2.0.0a18
|
|
Last updated for: spaCy 2.0.0a19
|
|
"""
|
|
from __future__ import unicode_literals, print_function
|
|
|
|
import plac
|
|
import random
|
|
import spacy
|
|
from pathlib import Path
|
|
|
|
|
|
# training data: texts, heads and dependency labels
|
|
# for no relation, we simply chose an arbitrary dependency label, e.g. '-'
|
|
TRAIN_DATA = [
|
|
("find a cafe with great wifi", {
|
|
'heads': [0, 2, 0, 5, 5, 2], # index of token head
|
|
'deps': ['ROOT', '-', 'PLACE', '-', 'QUALITY', 'ATTRIBUTE']
|
|
}),
|
|
("find a hotel near the beach", {
|
|
'heads': [0, 2, 0, 5, 5, 2],
|
|
'deps': ['ROOT', '-', 'PLACE', 'QUALITY', '-', 'ATTRIBUTE']
|
|
}),
|
|
("find me the closest gym that's open late", {
|
|
'heads': [0, 0, 4, 4, 0, 6, 4, 6, 6],
|
|
'deps': ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'ATTRIBUTE', 'TIME']
|
|
}),
|
|
("show me the cheapest store that sells flowers", {
|
|
'heads': [0, 0, 4, 4, 0, 4, 4, 4], # attach "flowers" to store!
|
|
'deps': ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'PRODUCT']
|
|
}),
|
|
("find a nice restaurant in london", {
|
|
'heads': [0, 3, 3, 0, 3, 3],
|
|
'deps': ['ROOT', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
|
|
}),
|
|
("show me the coolest hostel in berlin", {
|
|
'heads': [0, 0, 4, 4, 0, 4, 4],
|
|
'deps': ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
|
|
}),
|
|
("find a good italian restaurant near work", {
|
|
'heads': [0, 4, 4, 4, 0, 4, 5],
|
|
'deps': ['ROOT', '-', 'QUALITY', 'ATTRIBUTE', 'PLACE', 'ATTRIBUTE', 'LOCATION']
|
|
})
|
|
]
|
|
|
|
|
|
@plac.annotations(
|
|
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
|
output_dir=("Optional output directory", "option", "o", Path),
|
|
n_iter=("Number of training iterations", "option", "n", int))
|
|
def main(model=None, output_dir=None, n_iter=5):
|
|
"""Load the model, set up the pipeline and train the parser."""
|
|
if model is not None:
|
|
nlp = spacy.load(model) # load existing spaCy model
|
|
print("Loaded model '%s'" % model)
|
|
else:
|
|
nlp = spacy.blank('en') # create blank Language class
|
|
print("Created blank 'en' model")
|
|
|
|
# We'll use the built-in dependency parser
|
|
# class, but we want to create a fresh instance, and give it a different
|
|
# name.
|
|
if 'parser' in nlp.pipe_names:
|
|
nlp.remove_pipe('parser')
|
|
parser = nlp.create_pipe('parser')
|
|
nlp.add_pipe(parser, name='intent-parser', first=True)
|
|
|
|
for text, annotations in TRAIN_DATA:
|
|
for dep in annotations.get('deps', []):
|
|
parser.add_label(dep)
|
|
|
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'intent-parser']
|
|
with nlp.disable_pipes(*other_pipes): # only train parser
|
|
optimizer = nlp.begin_training()
|
|
for itn in range(n_iter):
|
|
random.shuffle(TRAIN_DATA)
|
|
losses = {}
|
|
for text, annotations in TRAIN_DATA:
|
|
nlp.update([text], [annotations], sgd=optimizer, losses=losses)
|
|
print(losses)
|
|
|
|
# test the trained model
|
|
test_model(nlp)
|
|
|
|
# save model to output directory
|
|
if output_dir is not None:
|
|
output_dir = Path(output_dir)
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
nlp.to_disk(output_dir)
|
|
print("Saved model to", output_dir)
|
|
|
|
# test the saved model
|
|
print("Loading from", output_dir)
|
|
nlp2 = spacy.load(output_dir)
|
|
test_model(nlp2)
|
|
|
|
|
|
def test_model(nlp):
|
|
texts = ["find a hotel with good wifi",
|
|
"find me the cheapest gym near work",
|
|
"show me the best hotel in berlin"]
|
|
docs = nlp.pipe(texts)
|
|
for doc in docs:
|
|
print(doc.text)
|
|
print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != '-'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
plac.call(main)
|
|
|
|
# Expected output:
|
|
# find a hotel with good wifi
|
|
# [
|
|
# ('find', 'ROOT', 'find'),
|
|
# ('hotel', 'PLACE', 'find'),
|
|
# ('good', 'QUALITY', 'wifi'),
|
|
# ('wifi', 'ATTRIBUTE', 'hotel')
|
|
# ]
|
|
# find me the cheapest gym near work
|
|
# [
|
|
# ('find', 'ROOT', 'find'),
|
|
# ('cheapest', 'QUALITY', 'gym'),
|
|
# ('gym', 'PLACE', 'find')
|
|
# ('work', 'LOCATION', 'near')
|
|
# ]
|
|
# show me the best hotel in berlin
|
|
# [
|
|
# ('show', 'ROOT', 'show'),
|
|
# ('best', 'QUALITY', 'hotel'),
|
|
# ('hotel', 'PLACE', 'show'),
|
|
# ('berlin', 'LOCATION', 'hotel')
|
|
# ]
|