creating training data with clean WP texts and QID entities true/false

This commit is contained in:
svlandeg 2019-05-03 10:44:29 +02:00
parent cba9680d13
commit bbcb9da466
1 changed files with 76 additions and 16 deletions

View File

@ -29,6 +29,8 @@ ENTITY_DEFS = 'C:/Users/Sofie/Documents/data/wikipedia/entity_defs.csv'
KB_FILE = 'C:/Users/Sofie/Documents/data/wikipedia/kb' KB_FILE = 'C:/Users/Sofie/Documents/data/wikipedia/kb'
VOCAB_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/vocab' VOCAB_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/vocab'
TRAINING_SET_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/training_nel/'
# these will/should be matched ignoring case # these will/should be matched ignoring case
wiki_namespaces = ["b", "betawikiversity", "Book", "c", "Category", "Commons", wiki_namespaces = ["b", "betawikiversity", "Book", "c", "Category", "Commons",
@ -224,7 +226,7 @@ def create_kb(vocab, max_entities_per_alias, min_occ, to_print=False, write_enti
print() print()
print("4. adding aliases", datetime.datetime.now()) print("4. adding aliases", datetime.datetime.now())
print() print()
_add_aliases(kb, title_to_id=title_to_id, max_entities_per_alias=max_entities_per_alias, min_occ=min_occ,) _add_aliases(kb, title_to_id=title_to_id, max_entities_per_alias=max_entities_per_alias, min_occ=min_occ)
# TODO: read wikipedia texts for entity context # TODO: read wikipedia texts for entity context
# _read_wikipedia() # _read_wikipedia()
@ -512,18 +514,27 @@ def add_coref():
print(doc._.coref_clusters) print(doc._.coref_clusters)
def create_training(): def create_training(kb):
nlp = spacy.load('en_core_web_sm') if not kb:
raise ValueError("kb should be defined")
# nlp = spacy.load('en_core_web_sm')
wp_to_id = _get_entity_to_id() wp_to_id = _get_entity_to_id()
_read_wikipedia_texts(nlp, wp_to_id, limit=10000) _read_wikipedia_texts(kb, wp_to_id, limit=None)
def _read_wikipedia_texts(nlp, wp_to_id, limit=None): def _read_wikipedia_texts(kb, wp_to_id, limit=None):
""" Read the XML wikipedia data to parse out training data """ """ Read the XML wikipedia data to parse out training data """
title_regex = re.compile(r'(?<=<title>).*(?=</title>)') title_regex = re.compile(r'(?<=<title>).*(?=</title>)')
id_regex = re.compile(r'(?<=<id>)\d*(?=</id>)') id_regex = re.compile(r'(?<=<id>)\d*(?=</id>)')
# read entity training header file
_write_training_entity(article_id="article_id",
alias="alias",
entity="entity",
correct="correct",
append=False)
with bz2.open(ENWIKI_DUMP, mode='rb') as file: with bz2.open(ENWIKI_DUMP, mode='rb') as file:
line = file.readline() line = file.readline()
cnt = 1 cnt = 1
@ -532,6 +543,8 @@ def _read_wikipedia_texts(nlp, wp_to_id, limit=None):
article_id = None article_id = None
reading_text = False reading_text = False
while line and (not limit or cnt < limit): while line and (not limit or cnt < limit):
if cnt % 500000 == 0:
print(datetime.datetime.now(), "processed", cnt, "lines of Wikipedia dump")
clean_line = line.strip().decode("utf-8") clean_line = line.strip().decode("utf-8")
# Start reading new page # Start reading new page
@ -543,7 +556,7 @@ def _read_wikipedia_texts(nlp, wp_to_id, limit=None):
# finished reading this page # finished reading this page
elif clean_line == "</page>": elif clean_line == "</page>":
if article_id: if article_id:
_process_wp_text(nlp, wp_to_id, article_id, article_title, article_text.strip()) _process_wp_text(kb, wp_to_id, article_id, article_title, article_text.strip())
# start reading text within a page # start reading text within a page
if "<text" in clean_line: if "<text" in clean_line:
@ -570,7 +583,7 @@ def _read_wikipedia_texts(nlp, wp_to_id, limit=None):
cnt += 1 cnt += 1
def _process_wp_text(nlp, wp_to_id, article_id, article_title, article_text): def _process_wp_text(kb, wp_to_id, article_id, article_title, article_text):
# remove the text tags # remove the text tags
text_regex = re.compile(r'(?<=<text xml:space=\"preserve\">).*(?=</text>)') text_regex = re.compile(r'(?<=<text xml:space=\"preserve\">).*(?=</text>)')
text = text_regex.search(article_text).group(0) text = text_regex.search(article_text).group(0)
@ -579,7 +592,14 @@ def _process_wp_text(nlp, wp_to_id, article_id, article_title, article_text):
if text.startswith("#REDIRECT"): if text.startswith("#REDIRECT"):
return return
print("WP article", article_id, ":", article_title) # print("WP article", article_id, ":", article_title)
# print()
# print(text)
# get the raw text without markup etc
clean_text = _get_clean_wp_text(text)
# print()
# print(clean_text)
article_dict = dict() article_dict = dict()
aliases, entities, normalizations = _get_wp_links(text) aliases, entities, normalizations = _get_wp_links(text)
@ -589,12 +609,37 @@ def _process_wp_text(nlp, wp_to_id, article_id, article_title, article_text):
article_dict[alias] = entity_id article_dict[alias] = entity_id
article_dict[entity] = entity_id article_dict[entity] = entity_id
# get the raw text without markup etc # print("found entities:")
clean_text = _get_clean_wp_text(text) for alias, entity in article_dict.items():
print(clean_text) # print(alias, "-->", entity)
candidates = kb.get_candidates(alias)
_run_ner(nlp, article_id, article_title, clean_text, article_dict) # as training data, we only store entities that are sufficiently ambiguous
print() if len(candidates) > 1:
_write_training_article(article_id=article_id, clean_text=clean_text)
# print("alias", alias)
# print all incorrect candidates
for c in candidates:
if entity != c.entity_:
_write_training_entity(article_id=article_id,
alias=alias,
entity=c.entity_,
correct="0",
append=True)
# print the one correct candidate
_write_training_entity(article_id=article_id,
alias=alias,
entity=entity,
correct="1",
append=True)
# print("gold entity", entity)
# print()
# _run_ner_depr(nlp, article_id, article_title, clean_text, article_dict)
# print()
info_regex = re.compile(r'{[^{]*?}') info_regex = re.compile(r'{[^{]*?}')
@ -669,7 +714,22 @@ def _get_clean_wp_text(article_text):
return clean_text.strip() return clean_text.strip()
def _run_ner(nlp, article_id, article_title, clean_text, article_dict): def _write_training_article(article_id, clean_text):
file_loc = TRAINING_SET_DIR + "/" + str(article_id) + ".txt"
with open(file_loc, mode='w', encoding='utf8') as outputfile:
outputfile.write(clean_text)
def _write_training_entity(article_id, alias, entity, correct, append=True):
mode = "w"
if append:
mode = "a"
file_loc = TRAINING_SET_DIR + "/" + "gold_entities.csv"
with open(file_loc, mode=mode, encoding='utf8') as outputfile:
outputfile.write(article_id + "|" + alias + "|" + entity + "|" + correct + "\n")
def _run_ner_depr(nlp, article_id, article_title, clean_text, article_dict):
doc = nlp(clean_text) doc = nlp(clean_text)
for ent in doc.ents: for ent in doc.ents:
if ent.label_ == "PERSON": # TODO: expand to non-persons if ent.label_ == "PERSON": # TODO: expand to non-persons
@ -691,7 +751,7 @@ if __name__ == "__main__":
to_create_kb = False to_create_kb = False
# read KB back in from file # read KB back in from file
to_read_kb = False to_read_kb = True
to_test_kb = False to_test_kb = False
create_wp_training = True create_wp_training = True
@ -745,7 +805,7 @@ if __name__ == "__main__":
# STEP 5: create a training dataset from WP # STEP 5: create a training dataset from WP
if create_wp_training: if create_wp_training:
print("STEP 5: create training dataset", datetime.datetime.now()) print("STEP 5: create training dataset", datetime.datetime.now())
create_training() create_training(my_kb)
# TODO coreference resolution # TODO coreference resolution
# add_coref() # add_coref()