diff --git a/examples/pipeline/wikidata_entity_linking.py b/examples/pipeline/wikidata_entity_linking.py index a0ffc3618..cf388773a 100644 --- a/examples/pipeline/wikidata_entity_linking.py +++ b/examples/pipeline/wikidata_entity_linking.py @@ -29,6 +29,8 @@ ENTITY_DEFS = 'C:/Users/Sofie/Documents/data/wikipedia/entity_defs.csv' KB_FILE = 'C:/Users/Sofie/Documents/data/wikipedia/kb' VOCAB_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/vocab' +TRAINING_SET_DIR = 'C:/Users/Sofie/Documents/data/wikipedia/training_nel/' + # these will/should be matched ignoring case wiki_namespaces = ["b", "betawikiversity", "Book", "c", "Category", "Commons", @@ -224,7 +226,7 @@ def create_kb(vocab, max_entities_per_alias, min_occ, to_print=False, write_enti print() print("4. adding aliases", datetime.datetime.now()) print() - _add_aliases(kb, title_to_id=title_to_id, max_entities_per_alias=max_entities_per_alias, min_occ=min_occ,) + _add_aliases(kb, title_to_id=title_to_id, max_entities_per_alias=max_entities_per_alias, min_occ=min_occ) # TODO: read wikipedia texts for entity context # _read_wikipedia() @@ -512,18 +514,27 @@ def add_coref(): print(doc._.coref_clusters) -def create_training(): - nlp = spacy.load('en_core_web_sm') +def create_training(kb): + if not kb: + raise ValueError("kb should be defined") + # nlp = spacy.load('en_core_web_sm') wp_to_id = _get_entity_to_id() - _read_wikipedia_texts(nlp, wp_to_id, limit=10000) + _read_wikipedia_texts(kb, wp_to_id, limit=None) -def _read_wikipedia_texts(nlp, wp_to_id, limit=None): +def _read_wikipedia_texts(kb, wp_to_id, limit=None): """ Read the XML wikipedia data to parse out training data """ title_regex = re.compile(r'(?<=).*(?=)') id_regex = re.compile(r'(?<=)\d*(?=)') + # read entity training header file + _write_training_entity(article_id="article_id", + alias="alias", + entity="entity", + correct="correct", + append=False) + with bz2.open(ENWIKI_DUMP, mode='rb') as file: line = file.readline() cnt = 1 @@ -532,6 +543,8 @@ def _read_wikipedia_texts(nlp, wp_to_id, limit=None): article_id = None reading_text = False while line and (not limit or cnt < limit): + if cnt % 500000 == 0: + print(datetime.datetime.now(), "processed", cnt, "lines of Wikipedia dump") clean_line = line.strip().decode("utf-8") # Start reading new page @@ -543,7 +556,7 @@ def _read_wikipedia_texts(nlp, wp_to_id, limit=None): # finished reading this page elif clean_line == "": if article_id: - _process_wp_text(nlp, wp_to_id, article_id, article_title, article_text.strip()) + _process_wp_text(kb, wp_to_id, article_id, article_title, article_text.strip()) # start reading text within a page if ").*(?=)') text = text_regex.search(article_text).group(0) @@ -579,7 +592,14 @@ def _process_wp_text(nlp, wp_to_id, article_id, article_title, article_text): if text.startswith("#REDIRECT"): return - print("WP article", article_id, ":", article_title) + # print("WP article", article_id, ":", article_title) + # print() + # print(text) + + # get the raw text without markup etc + clean_text = _get_clean_wp_text(text) + # print() + # print(clean_text) article_dict = dict() aliases, entities, normalizations = _get_wp_links(text) @@ -589,12 +609,37 @@ def _process_wp_text(nlp, wp_to_id, article_id, article_title, article_text): article_dict[alias] = entity_id article_dict[entity] = entity_id - # get the raw text without markup etc - clean_text = _get_clean_wp_text(text) - print(clean_text) + # print("found entities:") + for alias, entity in article_dict.items(): + # print(alias, "-->", entity) + candidates = kb.get_candidates(alias) - _run_ner(nlp, article_id, article_title, clean_text, article_dict) - print() + # as training data, we only store entities that are sufficiently ambiguous + if len(candidates) > 1: + _write_training_article(article_id=article_id, clean_text=clean_text) + # print("alias", alias) + + # print all incorrect candidates + for c in candidates: + if entity != c.entity_: + _write_training_entity(article_id=article_id, + alias=alias, + entity=c.entity_, + correct="0", + append=True) + + # print the one correct candidate + _write_training_entity(article_id=article_id, + alias=alias, + entity=entity, + correct="1", + append=True) + + # print("gold entity", entity) + # print() + + # _run_ner_depr(nlp, article_id, article_title, clean_text, article_dict) + # print() info_regex = re.compile(r'{[^{]*?}') @@ -669,7 +714,22 @@ def _get_clean_wp_text(article_text): return clean_text.strip() -def _run_ner(nlp, article_id, article_title, clean_text, article_dict): +def _write_training_article(article_id, clean_text): + file_loc = TRAINING_SET_DIR + "/" + str(article_id) + ".txt" + with open(file_loc, mode='w', encoding='utf8') as outputfile: + outputfile.write(clean_text) + + +def _write_training_entity(article_id, alias, entity, correct, append=True): + mode = "w" + if append: + mode = "a" + file_loc = TRAINING_SET_DIR + "/" + "gold_entities.csv" + with open(file_loc, mode=mode, encoding='utf8') as outputfile: + outputfile.write(article_id + "|" + alias + "|" + entity + "|" + correct + "\n") + + +def _run_ner_depr(nlp, article_id, article_title, clean_text, article_dict): doc = nlp(clean_text) for ent in doc.ents: if ent.label_ == "PERSON": # TODO: expand to non-persons @@ -691,7 +751,7 @@ if __name__ == "__main__": to_create_kb = False # read KB back in from file - to_read_kb = False + to_read_kb = True to_test_kb = False create_wp_training = True @@ -745,7 +805,7 @@ if __name__ == "__main__": # STEP 5: create a training dataset from WP if create_wp_training: print("STEP 5: create training dataset", datetime.datetime.now()) - create_training() + create_training(my_kb) # TODO coreference resolution # add_coref()