mirror of https://github.com/explosion/spaCy.git
Update config
This commit is contained in:
parent
105cf29967
commit
b5bbfec591
|
@ -20,20 +20,20 @@ seed = 0
|
||||||
accumulate_gradient = 1
|
accumulate_gradient = 1
|
||||||
use_pytorch_for_gpu_memory = false
|
use_pytorch_for_gpu_memory = false
|
||||||
# Control how scores are printed and checkpoints are evaluated.
|
# Control how scores are printed and checkpoints are evaluated.
|
||||||
scores = ["speed", "tags_acc", "uas", "las", "ents_f"]
|
eval_batch_size = 128
|
||||||
score_weights = {"las": 0.4, "ents_f": 0.4, "tags_acc": 0.2}
|
score_weights = {"las": 0.4, "ents_f": 0.4, "tags_acc": 0.2}
|
||||||
# These settings are invalid for the transformer models.
|
|
||||||
init_tok2vec = null
|
init_tok2vec = null
|
||||||
discard_oversize = false
|
discard_oversize = false
|
||||||
omit_extra_lookups = false
|
|
||||||
batch_by = "words"
|
batch_by = "words"
|
||||||
use_gpu = -1
|
|
||||||
raw_text = null
|
raw_text = null
|
||||||
tag_map = null
|
tag_map = null
|
||||||
|
vectors = null
|
||||||
|
base_model = null
|
||||||
|
morph_rules = null
|
||||||
|
|
||||||
[training.batch_size]
|
[training.batch_size]
|
||||||
@schedules = "compounding.v1"
|
@schedules = "compounding.v1"
|
||||||
start = 1000
|
start = 100
|
||||||
stop = 1000
|
stop = 1000
|
||||||
compound = 1.001
|
compound = 1.001
|
||||||
|
|
||||||
|
@ -46,74 +46,79 @@ L2 = 0.01
|
||||||
grad_clip = 1.0
|
grad_clip = 1.0
|
||||||
use_averages = false
|
use_averages = false
|
||||||
eps = 1e-8
|
eps = 1e-8
|
||||||
#learn_rate = 0.001
|
learn_rate = 0.001
|
||||||
|
|
||||||
[training.optimizer.learn_rate]
|
|
||||||
@schedules = "warmup_linear.v1"
|
|
||||||
warmup_steps = 250
|
|
||||||
total_steps = 20000
|
|
||||||
initial_rate = 0.001
|
|
||||||
|
|
||||||
[nlp]
|
[nlp]
|
||||||
lang = "en"
|
lang = "en"
|
||||||
base_model = null
|
load_vocab_data = false
|
||||||
vectors = null
|
pipeline = ["tok2vec", "ner", "tagger", "parser"]
|
||||||
|
|
||||||
[nlp.pipeline]
|
[nlp.tokenizer]
|
||||||
|
@tokenizers = "spacy.Tokenizer.v1"
|
||||||
|
|
||||||
[nlp.pipeline.tok2vec]
|
[nlp.lemmatizer]
|
||||||
|
@lemmatizers = "spacy.Lemmatizer.v1"
|
||||||
|
|
||||||
|
[components]
|
||||||
|
|
||||||
|
[components.tok2vec]
|
||||||
factory = "tok2vec"
|
factory = "tok2vec"
|
||||||
|
|
||||||
|
[components.ner]
|
||||||
[nlp.pipeline.ner]
|
|
||||||
factory = "ner"
|
factory = "ner"
|
||||||
learn_tokens = false
|
learn_tokens = false
|
||||||
min_action_freq = 1
|
min_action_freq = 1
|
||||||
|
|
||||||
[nlp.pipeline.tagger]
|
[components.tagger]
|
||||||
factory = "tagger"
|
factory = "tagger"
|
||||||
|
|
||||||
[nlp.pipeline.parser]
|
[components.parser]
|
||||||
factory = "parser"
|
factory = "parser"
|
||||||
learn_tokens = false
|
learn_tokens = false
|
||||||
min_action_freq = 30
|
min_action_freq = 30
|
||||||
|
|
||||||
[nlp.pipeline.tagger.model]
|
[components.tagger.model]
|
||||||
@architectures = "spacy.Tagger.v1"
|
@architectures = "spacy.Tagger.v1"
|
||||||
|
|
||||||
[nlp.pipeline.tagger.model.tok2vec]
|
[components.tagger.model.tok2vec]
|
||||||
@architectures = "spacy.Tok2VecTensors.v1"
|
@architectures = "spacy.Tok2VecListener.v1"
|
||||||
width = ${nlp.pipeline.tok2vec.model:width}
|
width = ${components.tok2vec.model.encode:width}
|
||||||
|
|
||||||
[nlp.pipeline.parser.model]
|
[components.parser.model]
|
||||||
@architectures = "spacy.TransitionBasedParser.v1"
|
@architectures = "spacy.TransitionBasedParser.v1"
|
||||||
nr_feature_tokens = 8
|
nr_feature_tokens = 8
|
||||||
hidden_width = 128
|
hidden_width = 128
|
||||||
maxout_pieces = 2
|
maxout_pieces = 2
|
||||||
use_upper = true
|
use_upper = true
|
||||||
|
|
||||||
[nlp.pipeline.parser.model.tok2vec]
|
[components.parser.model.tok2vec]
|
||||||
@architectures = "spacy.Tok2VecTensors.v1"
|
@architectures = "spacy.Tok2VecListener.v1"
|
||||||
width = ${nlp.pipeline.tok2vec.model:width}
|
width = ${components.tok2vec.model.encode:width}
|
||||||
|
|
||||||
[nlp.pipeline.ner.model]
|
[components.ner.model]
|
||||||
@architectures = "spacy.TransitionBasedParser.v1"
|
@architectures = "spacy.TransitionBasedParser.v1"
|
||||||
nr_feature_tokens = 3
|
nr_feature_tokens = 3
|
||||||
hidden_width = 128
|
hidden_width = 128
|
||||||
maxout_pieces = 2
|
maxout_pieces = 2
|
||||||
use_upper = true
|
use_upper = true
|
||||||
|
|
||||||
[nlp.pipeline.ner.model.tok2vec]
|
[components.ner.model.tok2vec]
|
||||||
@architectures = "spacy.Tok2VecTensors.v1"
|
@architectures = "spacy.Tok2VecListener.v1"
|
||||||
width = ${nlp.pipeline.tok2vec.model:width}
|
width = ${components.tok2vec.model.encode:width}
|
||||||
|
|
||||||
[nlp.pipeline.tok2vec.model]
|
[components.tok2vec.model]
|
||||||
@architectures = "spacy.HashEmbedCNN.v1"
|
@architectures = "spacy.Tok2Vec.v1"
|
||||||
pretrained_vectors = ${nlp:vectors}
|
|
||||||
width = 128
|
[components.tok2vec.model.embed]
|
||||||
|
@architectures = "spacy.MultiHashEmbed.v1"
|
||||||
|
width = ${components.tok2vec.model.encode:width}
|
||||||
|
rows = 2000
|
||||||
|
also_embed_subwords = true
|
||||||
|
also_use_static_vectors = false
|
||||||
|
|
||||||
|
[components.tok2vec.model.encode]
|
||||||
|
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||||
|
width = 96
|
||||||
depth = 4
|
depth = 4
|
||||||
window_size = 1
|
window_size = 1
|
||||||
embed_size = 7000
|
|
||||||
maxout_pieces = 3
|
maxout_pieces = 3
|
||||||
subword_features = true
|
|
||||||
dropout = ${training:dropout}
|
|
||||||
|
|
Loading…
Reference in New Issue