From b5bbfec591b9cb659bf51add783e0935fbee452b Mon Sep 17 00:00:00 2001 From: Matthew Honnibal Date: Wed, 29 Jul 2020 14:26:44 +0200 Subject: [PATCH] Update config --- examples/experiments/onto-joint/defaults.cfg | 83 +++++++++++--------- 1 file changed, 44 insertions(+), 39 deletions(-) diff --git a/examples/experiments/onto-joint/defaults.cfg b/examples/experiments/onto-joint/defaults.cfg index 95c2f28bd..d37929ff1 100644 --- a/examples/experiments/onto-joint/defaults.cfg +++ b/examples/experiments/onto-joint/defaults.cfg @@ -20,20 +20,20 @@ seed = 0 accumulate_gradient = 1 use_pytorch_for_gpu_memory = false # Control how scores are printed and checkpoints are evaluated. -scores = ["speed", "tags_acc", "uas", "las", "ents_f"] +eval_batch_size = 128 score_weights = {"las": 0.4, "ents_f": 0.4, "tags_acc": 0.2} -# These settings are invalid for the transformer models. init_tok2vec = null discard_oversize = false -omit_extra_lookups = false batch_by = "words" -use_gpu = -1 raw_text = null tag_map = null +vectors = null +base_model = null +morph_rules = null [training.batch_size] @schedules = "compounding.v1" -start = 1000 +start = 100 stop = 1000 compound = 1.001 @@ -46,74 +46,79 @@ L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 1e-8 -#learn_rate = 0.001 - -[training.optimizer.learn_rate] -@schedules = "warmup_linear.v1" -warmup_steps = 250 -total_steps = 20000 -initial_rate = 0.001 +learn_rate = 0.001 [nlp] lang = "en" -base_model = null -vectors = null +load_vocab_data = false +pipeline = ["tok2vec", "ner", "tagger", "parser"] -[nlp.pipeline] +[nlp.tokenizer] +@tokenizers = "spacy.Tokenizer.v1" -[nlp.pipeline.tok2vec] +[nlp.lemmatizer] +@lemmatizers = "spacy.Lemmatizer.v1" + +[components] + +[components.tok2vec] factory = "tok2vec" - -[nlp.pipeline.ner] +[components.ner] factory = "ner" learn_tokens = false min_action_freq = 1 -[nlp.pipeline.tagger] +[components.tagger] factory = "tagger" -[nlp.pipeline.parser] +[components.parser] factory = "parser" learn_tokens = false min_action_freq = 30 -[nlp.pipeline.tagger.model] +[components.tagger.model] @architectures = "spacy.Tagger.v1" -[nlp.pipeline.tagger.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} +[components.tagger.model.tok2vec] +@architectures = "spacy.Tok2VecListener.v1" +width = ${components.tok2vec.model.encode:width} -[nlp.pipeline.parser.model] +[components.parser.model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 8 hidden_width = 128 maxout_pieces = 2 use_upper = true -[nlp.pipeline.parser.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} +[components.parser.model.tok2vec] +@architectures = "spacy.Tok2VecListener.v1" +width = ${components.tok2vec.model.encode:width} -[nlp.pipeline.ner.model] +[components.ner.model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 3 hidden_width = 128 maxout_pieces = 2 use_upper = true -[nlp.pipeline.ner.model.tok2vec] -@architectures = "spacy.Tok2VecTensors.v1" -width = ${nlp.pipeline.tok2vec.model:width} +[components.ner.model.tok2vec] +@architectures = "spacy.Tok2VecListener.v1" +width = ${components.tok2vec.model.encode:width} -[nlp.pipeline.tok2vec.model] -@architectures = "spacy.HashEmbedCNN.v1" -pretrained_vectors = ${nlp:vectors} -width = 128 +[components.tok2vec.model] +@architectures = "spacy.Tok2Vec.v1" + +[components.tok2vec.model.embed] +@architectures = "spacy.MultiHashEmbed.v1" +width = ${components.tok2vec.model.encode:width} +rows = 2000 +also_embed_subwords = true +also_use_static_vectors = false + +[components.tok2vec.model.encode] +@architectures = "spacy.MaxoutWindowEncoder.v1" +width = 96 depth = 4 window_size = 1 -embed_size = 7000 maxout_pieces = 3 -subword_features = true -dropout = ${training:dropout}