mirror of https://github.com/explosion/spaCy.git
calculate gradient for entity encoding
This commit is contained in:
parent
2713abc651
commit
9ffe5437ae
|
@ -26,9 +26,10 @@ from spacy.tokens import Doc
|
||||||
class EL_Model():
|
class EL_Model():
|
||||||
|
|
||||||
INPUT_DIM = 300
|
INPUT_DIM = 300
|
||||||
OUTPUT_DIM = 5 # 96
|
OUTPUT_DIM = 96
|
||||||
PRINT_LOSS = True
|
PRINT_LOSS = False
|
||||||
PRINT_F = True
|
PRINT_F = True
|
||||||
|
EPS = 0.0000000005
|
||||||
|
|
||||||
labels = ["MATCH", "NOMATCH"]
|
labels = ["MATCH", "NOMATCH"]
|
||||||
name = "entity_linker"
|
name = "entity_linker"
|
||||||
|
@ -71,12 +72,12 @@ class EL_Model():
|
||||||
instance_count = 0
|
instance_count = 0
|
||||||
|
|
||||||
for article_id, inst_cluster_set in train_instances.items():
|
for article_id, inst_cluster_set in train_instances.items():
|
||||||
print("article", article_id)
|
# print("article", article_id)
|
||||||
article_doc = train_doc[article_id]
|
article_doc = train_doc[article_id]
|
||||||
pos_ex_list = list()
|
pos_ex_list = list()
|
||||||
neg_exs_list = list()
|
neg_exs_list = list()
|
||||||
for inst_cluster in inst_cluster_set:
|
for inst_cluster in inst_cluster_set:
|
||||||
print("inst_cluster", inst_cluster)
|
# print("inst_cluster", inst_cluster)
|
||||||
instance_count += 1
|
instance_count += 1
|
||||||
pos_ex_list.append(train_pos.get(inst_cluster))
|
pos_ex_list.append(train_pos.get(inst_cluster))
|
||||||
neg_exs_list.append(train_neg.get(inst_cluster, []))
|
neg_exs_list.append(train_neg.get(inst_cluster, []))
|
||||||
|
@ -143,19 +144,19 @@ class EL_Model():
|
||||||
conv_depth = 1
|
conv_depth = 1
|
||||||
cnn_maxout_pieces = 3
|
cnn_maxout_pieces = 3
|
||||||
with Model.define_operators({">>": chain, "**": clone}):
|
with Model.define_operators({">>": chain, "**": clone}):
|
||||||
encoder = SpacyVectors \
|
|
||||||
>> flatten_add_lengths \
|
|
||||||
>> ParametricAttention(in_width)\
|
|
||||||
>> Pooling(mean_pool) \
|
|
||||||
>> Residual(zero_init(Maxout(in_width, in_width))) \
|
|
||||||
>> zero_init(Affine(out_width, in_width, drop_factor=0.0))
|
|
||||||
# encoder = SpacyVectors \
|
# encoder = SpacyVectors \
|
||||||
# >> flatten_add_lengths \
|
# >> flatten_add_lengths \
|
||||||
# >> with_getitem(0, Affine(in_width, in_width)) \
|
# >> ParametricAttention(in_width)\
|
||||||
# >> ParametricAttention(in_width) \
|
# >> Pooling(mean_pool) \
|
||||||
# >> Pooling(sum_pool) \
|
# >> Residual(zero_init(Maxout(in_width, in_width))) \
|
||||||
# >> Residual(ReLu(in_width, in_width)) ** conv_depth \
|
# >> zero_init(Affine(out_width, in_width, drop_factor=0.0))
|
||||||
# >> zero_init(Affine(out_width, in_width, drop_factor=0.0))
|
encoder = SpacyVectors \
|
||||||
|
>> flatten_add_lengths \
|
||||||
|
>> with_getitem(0, Affine(in_width, in_width)) \
|
||||||
|
>> ParametricAttention(in_width) \
|
||||||
|
>> Pooling(sum_pool) \
|
||||||
|
>> Residual(ReLu(in_width, in_width)) ** conv_depth \
|
||||||
|
>> zero_init(Affine(out_width, in_width, drop_factor=0.0))
|
||||||
|
|
||||||
# >> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
# >> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
||||||
# >> logistic
|
# >> logistic
|
||||||
|
@ -178,20 +179,16 @@ class EL_Model():
|
||||||
return sgd
|
return sgd
|
||||||
|
|
||||||
def update(self, article_doc, true_entity_list, false_entities_list, drop=0., losses=None):
|
def update(self, article_doc, true_entity_list, false_entities_list, drop=0., losses=None):
|
||||||
|
doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop)
|
||||||
|
doc_encoding = doc_encoding[0]
|
||||||
|
# print("doc", doc_encoding)
|
||||||
|
|
||||||
for i, true_entity in enumerate(true_entity_list):
|
for i, true_entity in enumerate(true_entity_list):
|
||||||
for cnt in range(10):
|
try:
|
||||||
#try:
|
|
||||||
false_vectors = list()
|
false_vectors = list()
|
||||||
false_entities = false_entities_list[i]
|
false_entities = false_entities_list[i]
|
||||||
if len(false_entities) > 0:
|
if len(false_entities) > 0:
|
||||||
# TODO: batch per doc
|
# TODO: batch per doc
|
||||||
doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop)
|
|
||||||
doc_encoding = doc_encoding[0]
|
|
||||||
print()
|
|
||||||
print(cnt)
|
|
||||||
print("doc", doc_encoding)
|
|
||||||
|
|
||||||
for false_entity in false_entities:
|
for false_entity in false_entities:
|
||||||
# TODO: one call only to begin_update ?
|
# TODO: one call only to begin_update ?
|
||||||
|
@ -201,6 +198,7 @@ class EL_Model():
|
||||||
|
|
||||||
true_entity_encoding, true_entity_bp = self.entity_encoder.begin_update([true_entity], drop=drop)
|
true_entity_encoding, true_entity_bp = self.entity_encoder.begin_update([true_entity], drop=drop)
|
||||||
true_entity_encoding = true_entity_encoding[0]
|
true_entity_encoding = true_entity_encoding[0]
|
||||||
|
# true_gradient = self._calculate_true_gradient(doc_encoding, true_entity_encoding)
|
||||||
|
|
||||||
all_vectors = [true_entity_encoding]
|
all_vectors = [true_entity_encoding]
|
||||||
all_vectors.extend(false_vectors)
|
all_vectors.extend(false_vectors)
|
||||||
|
@ -208,29 +206,37 @@ class EL_Model():
|
||||||
# consensus_encoding = self._calculate_consensus(doc_encoding, true_entity_encoding)
|
# consensus_encoding = self._calculate_consensus(doc_encoding, true_entity_encoding)
|
||||||
|
|
||||||
true_prob = self._calculate_probability(doc_encoding, true_entity_encoding, all_vectors)
|
true_prob = self._calculate_probability(doc_encoding, true_entity_encoding, all_vectors)
|
||||||
print("true", true_prob, true_entity_encoding)
|
# print("true", true_prob, true_entity_encoding)
|
||||||
|
# print("true gradient", true_gradient)
|
||||||
|
# print()
|
||||||
|
|
||||||
all_probs = [true_prob]
|
all_probs = [true_prob]
|
||||||
for false_vector in false_vectors:
|
for false_vector in false_vectors:
|
||||||
false_prob = self._calculate_probability(doc_encoding, false_vector, all_vectors)
|
false_prob = self._calculate_probability(doc_encoding, false_vector, all_vectors)
|
||||||
print("false", false_prob, false_vector)
|
# print("false", false_prob, false_vector)
|
||||||
|
# print("false gradient", false_gradient)
|
||||||
|
# print()
|
||||||
all_probs.append(false_prob)
|
all_probs.append(false_prob)
|
||||||
|
|
||||||
loss = self._calculate_loss(true_prob, all_probs).astype(np.float32)
|
loss = self._calculate_loss(true_prob, all_probs).astype(np.float32)
|
||||||
if self.PRINT_LOSS:
|
if self.PRINT_LOSS:
|
||||||
print("loss", round(loss, 5))
|
print(round(loss, 5))
|
||||||
|
|
||||||
doc_gradient = self._calculate_doc_gradient(loss, doc_encoding, true_entity_encoding, false_vectors)
|
#doc_gradient = self._calculate_doc_gradient(loss, doc_encoding, true_entity_encoding, false_vectors)
|
||||||
print("doc_gradient", doc_gradient)
|
entity_gradient = self._calculate_entity_gradient(doc_encoding, true_entity_encoding, false_vectors)
|
||||||
article_bp([doc_gradient.astype(np.float32)], sgd=self.sgd_article)
|
# print("entity_gradient", entity_gradient)
|
||||||
#except Exception as e:
|
# print("doc_gradient", doc_gradient)
|
||||||
#pass
|
# article_bp([doc_gradient.astype(np.float32)], sgd=self.sgd_article)
|
||||||
|
true_entity_bp([entity_gradient.astype(np.float32)], sgd=self.sgd_entity)
|
||||||
|
#true_entity_bp([true_gradient.astype(np.float32)], sgd=self.sgd_entity)
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
# TODO: FIX
|
# TODO: FIX
|
||||||
def _calculate_consensus(self, vector1, vector2):
|
def _calculate_consensus(self, vector1, vector2):
|
||||||
if len(vector1) != len(vector2):
|
if len(vector1) != len(vector2):
|
||||||
raise ValueError("To calculate consenus, both vectors should be of equal length")
|
raise ValueError("To calculate consensus, both vectors should be of equal length")
|
||||||
|
|
||||||
avg = (vector2 + vector1) / 2
|
avg = (vector2 + vector1) / 2
|
||||||
return avg
|
return avg
|
||||||
|
@ -246,12 +252,11 @@ class EL_Model():
|
||||||
for v in allvectors:
|
for v in allvectors:
|
||||||
e_sum += self._calculate_dot_exp(v, vector1_t)
|
e_sum += self._calculate_dot_exp(v, vector1_t)
|
||||||
|
|
||||||
return float(e / e_sum)
|
return float(e / (self.EPS + e_sum))
|
||||||
|
|
||||||
@staticmethod
|
def _calculate_loss(self, true_prob, all_probs):
|
||||||
def _calculate_loss(true_prob, all_probs):
|
|
||||||
""" all_probs should include true_prob ! """
|
""" all_probs should include true_prob ! """
|
||||||
return -1 * np.log(true_prob / sum(all_probs))
|
return -1 * np.log((self.EPS + true_prob) / (self.EPS + sum(all_probs)))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _calculate_doc_gradient(loss, doc_vector, true_vector, false_vectors):
|
def _calculate_doc_gradient(loss, doc_vector, true_vector, false_vectors):
|
||||||
|
@ -276,9 +281,53 @@ class EL_Model():
|
||||||
|
|
||||||
return gradient
|
return gradient
|
||||||
|
|
||||||
|
def _calculate_true_gradient(self, doc_vector, entity_vector):
|
||||||
|
# sum_entity_vector = sum(entity_vector)
|
||||||
|
# gradient = [-sum_entity_vector/(self.EPS + np.exp(doc_vector[i] * entity_vector[i])) for i in range(len(doc_vector))]
|
||||||
|
gradient = [1 / (self.EPS + np.exp(doc_vector[i] * entity_vector[i])) for i in range(len(doc_vector))]
|
||||||
|
return np.asarray(gradient)
|
||||||
|
|
||||||
|
def _calculate_entity_gradient(self, doc_vector, true_vector, false_vectors):
|
||||||
|
entity_gradient = list()
|
||||||
|
prob_true = list()
|
||||||
|
false_prob_list = list()
|
||||||
|
for i in range(len(true_vector)):
|
||||||
|
doc_i = np.asarray([doc_vector[i]])
|
||||||
|
true_i = np.asarray([true_vector[i]])
|
||||||
|
falses_i = np.asarray([[fv[i]] for fv in false_vectors])
|
||||||
|
all_i = [true_i]
|
||||||
|
all_i.extend(falses_i)
|
||||||
|
|
||||||
|
prob_true_i = self._calculate_probability(doc_i, true_i, all_i)
|
||||||
|
prob_true.append(prob_true_i)
|
||||||
|
|
||||||
|
false_list = list()
|
||||||
|
all_probs_i = [prob_true_i]
|
||||||
|
for false_vector in falses_i:
|
||||||
|
false_prob_i = self._calculate_probability(doc_i, false_vector, all_i)
|
||||||
|
all_probs_i.append(false_prob_i)
|
||||||
|
false_list.append(false_prob_i)
|
||||||
|
false_prob_list.append(false_list)
|
||||||
|
|
||||||
|
sign_loss_i = 1
|
||||||
|
if doc_vector[i] * true_vector[i] < 0:
|
||||||
|
sign_loss_i = -1
|
||||||
|
|
||||||
|
loss_i = sign_loss_i * self._calculate_loss(prob_true_i, all_probs_i).astype(np.float32)
|
||||||
|
entity_gradient.append(loss_i)
|
||||||
|
# print("prob_true", prob_true)
|
||||||
|
# print("false_prob_list", false_prob_list)
|
||||||
|
return np.asarray(entity_gradient)
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _calculate_dot_exp(vector1, vector2_transposed):
|
def _calculate_dot_exp(vector1, vector2_transposed):
|
||||||
e = np.exp(vector1.dot(vector2_transposed))
|
dot_product = vector1.dot(vector2_transposed)
|
||||||
|
dot_product = min(50, dot_product)
|
||||||
|
# dot_product = max(-10000, dot_product)
|
||||||
|
# print("DOT", dot_product)
|
||||||
|
e = np.exp(dot_product)
|
||||||
|
# print("E", e)
|
||||||
return e
|
return e
|
||||||
|
|
||||||
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
|
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
|
||||||
|
|
|
@ -111,7 +111,7 @@ if __name__ == "__main__":
|
||||||
print("STEP 6: training ", datetime.datetime.now())
|
print("STEP 6: training ", datetime.datetime.now())
|
||||||
my_nlp = spacy.load('en_core_web_md')
|
my_nlp = spacy.load('en_core_web_md')
|
||||||
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
|
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
|
||||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1, devlimit=5)
|
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1500, devlimit=50)
|
||||||
print()
|
print()
|
||||||
|
|
||||||
# STEP 7: apply the EL algorithm on the dev dataset
|
# STEP 7: apply the EL algorithm on the dev dataset
|
||||||
|
|
Loading…
Reference in New Issue