diff --git a/examples/pipeline/wiki_entity_linking/train_el.py b/examples/pipeline/wiki_entity_linking/train_el.py index 06ac8d1d4..9f674d239 100644 --- a/examples/pipeline/wiki_entity_linking/train_el.py +++ b/examples/pipeline/wiki_entity_linking/train_el.py @@ -26,9 +26,10 @@ from spacy.tokens import Doc class EL_Model(): INPUT_DIM = 300 - OUTPUT_DIM = 5 # 96 - PRINT_LOSS = True + OUTPUT_DIM = 96 + PRINT_LOSS = False PRINT_F = True + EPS = 0.0000000005 labels = ["MATCH", "NOMATCH"] name = "entity_linker" @@ -71,12 +72,12 @@ class EL_Model(): instance_count = 0 for article_id, inst_cluster_set in train_instances.items(): - print("article", article_id) + # print("article", article_id) article_doc = train_doc[article_id] pos_ex_list = list() neg_exs_list = list() for inst_cluster in inst_cluster_set: - print("inst_cluster", inst_cluster) + # print("inst_cluster", inst_cluster) instance_count += 1 pos_ex_list.append(train_pos.get(inst_cluster)) neg_exs_list.append(train_neg.get(inst_cluster, [])) @@ -143,19 +144,19 @@ class EL_Model(): conv_depth = 1 cnn_maxout_pieces = 3 with Model.define_operators({">>": chain, "**": clone}): - encoder = SpacyVectors \ - >> flatten_add_lengths \ - >> ParametricAttention(in_width)\ - >> Pooling(mean_pool) \ - >> Residual(zero_init(Maxout(in_width, in_width))) \ - >> zero_init(Affine(out_width, in_width, drop_factor=0.0)) # encoder = SpacyVectors \ - # >> flatten_add_lengths \ - # >> with_getitem(0, Affine(in_width, in_width)) \ - # >> ParametricAttention(in_width) \ - # >> Pooling(sum_pool) \ - # >> Residual(ReLu(in_width, in_width)) ** conv_depth \ - # >> zero_init(Affine(out_width, in_width, drop_factor=0.0)) + # >> flatten_add_lengths \ + # >> ParametricAttention(in_width)\ + # >> Pooling(mean_pool) \ + # >> Residual(zero_init(Maxout(in_width, in_width))) \ + # >> zero_init(Affine(out_width, in_width, drop_factor=0.0)) + encoder = SpacyVectors \ + >> flatten_add_lengths \ + >> with_getitem(0, Affine(in_width, in_width)) \ + >> ParametricAttention(in_width) \ + >> Pooling(sum_pool) \ + >> Residual(ReLu(in_width, in_width)) ** conv_depth \ + >> zero_init(Affine(out_width, in_width, drop_factor=0.0)) # >> zero_init(Affine(nr_class, width, drop_factor=0.0)) # >> logistic @@ -178,20 +179,16 @@ class EL_Model(): return sgd def update(self, article_doc, true_entity_list, false_entities_list, drop=0., losses=None): - + doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop) + doc_encoding = doc_encoding[0] + # print("doc", doc_encoding) for i, true_entity in enumerate(true_entity_list): - for cnt in range(10): - #try: + try: false_vectors = list() false_entities = false_entities_list[i] if len(false_entities) > 0: # TODO: batch per doc - doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop) - doc_encoding = doc_encoding[0] - print() - print(cnt) - print("doc", doc_encoding) for false_entity in false_entities: # TODO: one call only to begin_update ? @@ -201,6 +198,7 @@ class EL_Model(): true_entity_encoding, true_entity_bp = self.entity_encoder.begin_update([true_entity], drop=drop) true_entity_encoding = true_entity_encoding[0] + # true_gradient = self._calculate_true_gradient(doc_encoding, true_entity_encoding) all_vectors = [true_entity_encoding] all_vectors.extend(false_vectors) @@ -208,29 +206,37 @@ class EL_Model(): # consensus_encoding = self._calculate_consensus(doc_encoding, true_entity_encoding) true_prob = self._calculate_probability(doc_encoding, true_entity_encoding, all_vectors) - print("true", true_prob, true_entity_encoding) + # print("true", true_prob, true_entity_encoding) + # print("true gradient", true_gradient) + # print() all_probs = [true_prob] for false_vector in false_vectors: false_prob = self._calculate_probability(doc_encoding, false_vector, all_vectors) - print("false", false_prob, false_vector) + # print("false", false_prob, false_vector) + # print("false gradient", false_gradient) + # print() all_probs.append(false_prob) loss = self._calculate_loss(true_prob, all_probs).astype(np.float32) if self.PRINT_LOSS: - print("loss", round(loss, 5)) + print(round(loss, 5)) - doc_gradient = self._calculate_doc_gradient(loss, doc_encoding, true_entity_encoding, false_vectors) - print("doc_gradient", doc_gradient) - article_bp([doc_gradient.astype(np.float32)], sgd=self.sgd_article) - #except Exception as e: - #pass + #doc_gradient = self._calculate_doc_gradient(loss, doc_encoding, true_entity_encoding, false_vectors) + entity_gradient = self._calculate_entity_gradient(doc_encoding, true_entity_encoding, false_vectors) + # print("entity_gradient", entity_gradient) + # print("doc_gradient", doc_gradient) + # article_bp([doc_gradient.astype(np.float32)], sgd=self.sgd_article) + true_entity_bp([entity_gradient.astype(np.float32)], sgd=self.sgd_entity) + #true_entity_bp([true_gradient.astype(np.float32)], sgd=self.sgd_entity) + except Exception as e: + pass # TODO: FIX def _calculate_consensus(self, vector1, vector2): if len(vector1) != len(vector2): - raise ValueError("To calculate consenus, both vectors should be of equal length") + raise ValueError("To calculate consensus, both vectors should be of equal length") avg = (vector2 + vector1) / 2 return avg @@ -246,12 +252,11 @@ class EL_Model(): for v in allvectors: e_sum += self._calculate_dot_exp(v, vector1_t) - return float(e / e_sum) + return float(e / (self.EPS + e_sum)) - @staticmethod - def _calculate_loss(true_prob, all_probs): + def _calculate_loss(self, true_prob, all_probs): """ all_probs should include true_prob ! """ - return -1 * np.log(true_prob / sum(all_probs)) + return -1 * np.log((self.EPS + true_prob) / (self.EPS + sum(all_probs))) @staticmethod def _calculate_doc_gradient(loss, doc_vector, true_vector, false_vectors): @@ -276,9 +281,53 @@ class EL_Model(): return gradient + def _calculate_true_gradient(self, doc_vector, entity_vector): + # sum_entity_vector = sum(entity_vector) + # gradient = [-sum_entity_vector/(self.EPS + np.exp(doc_vector[i] * entity_vector[i])) for i in range(len(doc_vector))] + gradient = [1 / (self.EPS + np.exp(doc_vector[i] * entity_vector[i])) for i in range(len(doc_vector))] + return np.asarray(gradient) + + def _calculate_entity_gradient(self, doc_vector, true_vector, false_vectors): + entity_gradient = list() + prob_true = list() + false_prob_list = list() + for i in range(len(true_vector)): + doc_i = np.asarray([doc_vector[i]]) + true_i = np.asarray([true_vector[i]]) + falses_i = np.asarray([[fv[i]] for fv in false_vectors]) + all_i = [true_i] + all_i.extend(falses_i) + + prob_true_i = self._calculate_probability(doc_i, true_i, all_i) + prob_true.append(prob_true_i) + + false_list = list() + all_probs_i = [prob_true_i] + for false_vector in falses_i: + false_prob_i = self._calculate_probability(doc_i, false_vector, all_i) + all_probs_i.append(false_prob_i) + false_list.append(false_prob_i) + false_prob_list.append(false_list) + + sign_loss_i = 1 + if doc_vector[i] * true_vector[i] < 0: + sign_loss_i = -1 + + loss_i = sign_loss_i * self._calculate_loss(prob_true_i, all_probs_i).astype(np.float32) + entity_gradient.append(loss_i) + # print("prob_true", prob_true) + # print("false_prob_list", false_prob_list) + return np.asarray(entity_gradient) + + @staticmethod def _calculate_dot_exp(vector1, vector2_transposed): - e = np.exp(vector1.dot(vector2_transposed)) + dot_product = vector1.dot(vector2_transposed) + dot_product = min(50, dot_product) + # dot_product = max(-10000, dot_product) + # print("DOT", dot_product) + e = np.exp(dot_product) + # print("E", e) return e def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print): diff --git a/examples/pipeline/wiki_entity_linking/wiki_nel_pipeline.py b/examples/pipeline/wiki_entity_linking/wiki_nel_pipeline.py index bc75ac09a..cccc67650 100644 --- a/examples/pipeline/wiki_entity_linking/wiki_nel_pipeline.py +++ b/examples/pipeline/wiki_entity_linking/wiki_nel_pipeline.py @@ -111,7 +111,7 @@ if __name__ == "__main__": print("STEP 6: training ", datetime.datetime.now()) my_nlp = spacy.load('en_core_web_md') trainer = EL_Model(kb=my_kb, nlp=my_nlp) - trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1, devlimit=5) + trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1500, devlimit=50) print() # STEP 7: apply the EL algorithm on the dev dataset