Add example using TensorBoard standalone projector

- the tensorboard standalone project expects a different set of files than the plugin to TensorFlow.
This commit is contained in:
Justin DuJardin 2018-03-25 21:50:13 -07:00
parent 68226109f4
commit 4eeb178856
1 changed files with 88 additions and 0 deletions

View File

@ -0,0 +1,88 @@
#!/usr/bin/env python
# coding: utf8
"""Export spaCy model vectors for use in TensorBoard's standalone embedding projector.
https://github.com/tensorflow/embedding-projector-standalone
Usage:
python vectors_tensorboard_standalone.py ./myVectorModel ./output [name]
This outputs two files that have to be copied into the "oss_data" of the standalone projector:
[name]_labels.tsv - metadata such as human readable labels for vectors
[name]_tensors.bytes - numpy.ndarray of numpy.float32 precision vectors
"""
from __future__ import unicode_literals
import json
import math
from os import path
import numpy
import plac
import spacy
import tqdm
@plac.annotations(
vectors_loc=("Path to spaCy model that contains vectors", "positional", None, str),
out_loc=("Path to output folder writing tensors and labels data", "positional", None, str),
name=("Human readable name for tsv file and vectors tensor", "positional", None, str),
)
def main(vectors_loc, out_loc, name="spaCy_vectors"):
# A tab-separated file that contains information about the vectors for visualization
#
# Learn more: https://www.tensorflow.org/programmers_guide/embedding#metadata
meta_file = "{}_labels.tsv".format(name)
out_meta_file = path.join(out_loc, meta_file)
print('Loading spaCy vectors model: {}'.format(vectors_loc))
model = spacy.load(vectors_loc)
print('Finding lexemes with vectors attached: {}'.format(vectors_loc))
voacb_strings = [
w for w in tqdm.tqdm(model.vocab.strings, total=len(model.vocab.strings), leave=False)
if model.vocab.has_vector(w)
]
vector_count = len(voacb_strings)
print('Building Projector labels for {} vectors: {}'.format(vector_count, out_meta_file))
vector_dimensions = model.vocab.vectors.shape[1]
tf_vectors_variable = numpy.zeros((vector_count, vector_dimensions), dtype=numpy.float32)
# Write a tab-separated file that contains information about the vectors for visualization
#
# Reference: https://www.tensorflow.org/programmers_guide/embedding#metadata
with open(out_meta_file, 'wb') as file_metadata:
# Define columns in the first row
file_metadata.write("Text\tFrequency\n".encode('utf-8'))
# Write out a row for each vector that we add to the tensorflow variable we created
vec_index = 0
for text in tqdm.tqdm(voacb_strings, total=len(voacb_strings), leave=False):
# https://github.com/tensorflow/tensorflow/issues/9094
text = '<Space>' if text.lstrip() == '' else text
lex = model.vocab[text]
# Store vector data and metadata
tf_vectors_variable[vec_index] = numpy.float64(model.vocab.get_vector(text))
file_metadata.write("{}\t{}\n".format(text, math.exp(lex.prob) * len(voacb_strings)).encode('utf-8'))
vec_index += 1
# Write out "[name]_tensors.bytes" file for standalone embeddings projector to load
tensor_path = '{}_tensors.bytes'.format(name)
tf_vectors_variable.tofile(path.join(out_loc, tensor_path))
print('Done.')
print('Add the following entry to "oss_data/oss_demo_projector_config.json"')
print(json.dumps({
"tensorName": name,
"tensorShape": [vector_count, vector_dimensions],
"tensorPath": 'oss_data/{}'.format(tensor_path),
"metadataPath": 'oss_data/{}'.format(meta_file)
}, indent=2))
if __name__ == '__main__':
plac.call(main)