diff --git a/examples/vectors_tensorboard_standalone.py b/examples/vectors_tensorboard_standalone.py new file mode 100644 index 000000000..7a9abf785 --- /dev/null +++ b/examples/vectors_tensorboard_standalone.py @@ -0,0 +1,88 @@ +#!/usr/bin/env python +# coding: utf8 +"""Export spaCy model vectors for use in TensorBoard's standalone embedding projector. +https://github.com/tensorflow/embedding-projector-standalone + +Usage: + + python vectors_tensorboard_standalone.py ./myVectorModel ./output [name] + +This outputs two files that have to be copied into the "oss_data" of the standalone projector: + + [name]_labels.tsv - metadata such as human readable labels for vectors + [name]_tensors.bytes - numpy.ndarray of numpy.float32 precision vectors + +""" +from __future__ import unicode_literals + +import json +import math +from os import path + +import numpy +import plac +import spacy +import tqdm + + +@plac.annotations( + vectors_loc=("Path to spaCy model that contains vectors", "positional", None, str), + out_loc=("Path to output folder writing tensors and labels data", "positional", None, str), + name=("Human readable name for tsv file and vectors tensor", "positional", None, str), +) +def main(vectors_loc, out_loc, name="spaCy_vectors"): + # A tab-separated file that contains information about the vectors for visualization + # + # Learn more: https://www.tensorflow.org/programmers_guide/embedding#metadata + meta_file = "{}_labels.tsv".format(name) + out_meta_file = path.join(out_loc, meta_file) + + print('Loading spaCy vectors model: {}'.format(vectors_loc)) + model = spacy.load(vectors_loc) + + print('Finding lexemes with vectors attached: {}'.format(vectors_loc)) + voacb_strings = [ + w for w in tqdm.tqdm(model.vocab.strings, total=len(model.vocab.strings), leave=False) + if model.vocab.has_vector(w) + ] + vector_count = len(voacb_strings) + + print('Building Projector labels for {} vectors: {}'.format(vector_count, out_meta_file)) + vector_dimensions = model.vocab.vectors.shape[1] + tf_vectors_variable = numpy.zeros((vector_count, vector_dimensions), dtype=numpy.float32) + + # Write a tab-separated file that contains information about the vectors for visualization + # + # Reference: https://www.tensorflow.org/programmers_guide/embedding#metadata + with open(out_meta_file, 'wb') as file_metadata: + # Define columns in the first row + file_metadata.write("Text\tFrequency\n".encode('utf-8')) + # Write out a row for each vector that we add to the tensorflow variable we created + vec_index = 0 + + for text in tqdm.tqdm(voacb_strings, total=len(voacb_strings), leave=False): + # https://github.com/tensorflow/tensorflow/issues/9094 + text = '' if text.lstrip() == '' else text + lex = model.vocab[text] + + # Store vector data and metadata + tf_vectors_variable[vec_index] = numpy.float64(model.vocab.get_vector(text)) + file_metadata.write("{}\t{}\n".format(text, math.exp(lex.prob) * len(voacb_strings)).encode('utf-8')) + vec_index += 1 + + # Write out "[name]_tensors.bytes" file for standalone embeddings projector to load + tensor_path = '{}_tensors.bytes'.format(name) + tf_vectors_variable.tofile(path.join(out_loc, tensor_path)) + + print('Done.') + print('Add the following entry to "oss_data/oss_demo_projector_config.json"') + print(json.dumps({ + "tensorName": name, + "tensorShape": [vector_count, vector_dimensions], + "tensorPath": 'oss_data/{}'.format(tensor_path), + "metadataPath": 'oss_data/{}'.format(meta_file) + }, indent=2)) + + +if __name__ == '__main__': + plac.call(main)