* Add support for tag dictionary, and fix error-code for predict method

This commit is contained in:
Matthew Honnibal 2014-12-07 22:07:16 +11:00
parent f00afe12c4
commit 3819a88e1b
2 changed files with 38 additions and 21 deletions

View File

@ -3,6 +3,7 @@ from cymem.cymem cimport Pool
from thinc.learner cimport LinearModel
from thinc.features cimport Extractor
from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t
from preshed.maps cimport PreshMap
from .typedefs cimport hash_t
from .tokens cimport Tokens
@ -15,7 +16,7 @@ cpdef enum TagType:
cdef class Tagger:
cpdef int set_tags(self, Tokens tokens) except -1
cpdef class_t predict(self, int i, Tokens tokens, object golds=*) except 0
cpdef class_t predict(self, int i, Tokens tokens, object golds=*) except *
cpdef readonly Pool mem
cpdef readonly Extractor extractor
@ -23,3 +24,4 @@ cdef class Tagger:
cpdef readonly TagType tag_type
cpdef readonly list tag_names
cdef dict tagdict

View File

@ -18,7 +18,7 @@ from thinc.features cimport Feature, count_feats
NULL_TAG = 0
def setup_model_dir(tag_type, tag_names, templates, model_dir):
def setup_model_dir(tag_type, tag_names, tag_counts, templates, model_dir):
if path.exists(model_dir):
shutil.rmtree(model_dir)
os.mkdir(model_dir)
@ -26,6 +26,7 @@ def setup_model_dir(tag_type, tag_names, templates, model_dir):
'tag_type': tag_type,
'templates': templates,
'tag_names': tag_names,
'tag_counts': tag_counts,
}
with open(path.join(model_dir, 'config.json'), 'w') as file_:
json.dump(config, file_)
@ -35,24 +36,19 @@ def train(train_sents, model_dir, nr_iter=10):
cdef Tokens tokens
cdef Tagger tagger = Tagger(model_dir)
cdef int i
cdef class_t guess = 0
cdef class_t gold
for _ in range(nr_iter):
n_corr = 0
total = 0
for tokens, golds in train_sents:
assert len(tokens) == len(golds), [t.string for t in tokens]
for i in range(tokens.length):
if tagger.tag_type == POS:
gold = _get_gold_pos(i, golds)
else:
raise StandardError
guess = tagger.predict(i, tokens)
gold = golds[i]
guess = tagger.predict(i, tokens, [gold])
tokens.set_tag(i, tagger.tag_type, guess)
if gold is not None:
tagger.tell_answer(gold)
total += 1
n_corr += guess in gold
#print('%s\t%d\t%d' % (tokens[i].string, guess, gold))
n_corr += guess == gold
print('%.4f' % ((n_corr / total) * 100))
random.shuffle(train_sents)
tagger.model.end_training()
@ -96,8 +92,9 @@ cdef class Tagger:
templates = cfg['templates']
self.tag_names = cfg['tag_names']
self.tag_type = cfg['tag_type']
self.tagdict = _make_tag_dict(cfg['tag_counts'])
self.extractor = Extractor(templates)
self.model = LinearModel(len(self.tag_names))
self.model = LinearModel(len(self.tag_names), self.extractor.n_templ+2)
if path.exists(path.join(model_dir, 'model')):
self.model.load(path.join(model_dir, 'model'))
@ -113,7 +110,7 @@ cdef class Tagger:
for i in range(tokens.length):
tokens.set_tag(i, self.tag_type, self.predict(i, tokens))
cpdef class_t predict(self, int i, Tokens tokens, object golds=None) except 0:
cpdef class_t predict(self, int i, Tokens tokens, object golds=None) except *:
"""Predict the tag of tokens[i]. The tagger remembers the features and
prediction, in case you later call tell_answer.
@ -121,16 +118,18 @@ cdef class Tagger:
>>> tag = EN.pos_tagger.predict(0, tokens)
>>> assert tag == EN.pos_tagger.tag_id('DT') == 5
"""
cdef int n_feats
cdef atom_t sic = tokens.data[i].lex.sic
if sic in self.tagdict:
return self.tagdict[sic]
cdef atom_t[N_FIELDS] context
print sizeof(context)
fill_context(context, i, tokens.data)
cdef int n_feats
cdef Feature* feats = self.extractor.get_feats(context, &n_feats)
cdef weight_t* scores = self.model.get_scores(feats, n_feats)
cdef class_t guess = _arg_max(scores, self.nr_class)
guess = _arg_max(scores, self.model.nr_class)
if golds is not None and guess not in golds:
best = _arg_max_among(scores, golds)
counts = {}
counts = {guess: {}, best: {}}
count_feats(counts[guess], feats, n_feats, -1)
count_feats(counts[best], feats, n_feats, 1)
self.model.update(counts)
@ -145,12 +144,28 @@ cdef class Tagger:
return tag_id
cdef class_t _arg_max(weight_t* scores, int n_classes):
def _make_tag_dict(counts):
freq_thresh = 50
ambiguity_thresh = 0.98
tagdict = {}
cdef atom_t word
cdef atom_t tag
for word_str, tag_freqs in counts.items():
tag_str, mode = max(tag_freqs.items(), key=lambda item: item[1])
n = sum(tag_freqs.values())
word = int(word_str)
tag = int(tag_str)
if n >= freq_thresh and (float(mode) / n) >= ambiguity_thresh:
tagdict[word] = tag
return tagdict
cdef class_t _arg_max(weight_t* scores, int n_classes) except 9000:
cdef int best = 0
cdef weight_t score = scores[best]
cdef int i
for i in range(1, n_classes):
if scores[i] > score:
if scores[i] >= score:
score = scores[i]
best = i
return best