diff --git a/spacy/tagger.pxd b/spacy/tagger.pxd index 0a9b4a0c4..772086926 100644 --- a/spacy/tagger.pxd +++ b/spacy/tagger.pxd @@ -3,6 +3,7 @@ from cymem.cymem cimport Pool from thinc.learner cimport LinearModel from thinc.features cimport Extractor from thinc.typedefs cimport atom_t, feat_t, weight_t, class_t +from preshed.maps cimport PreshMap from .typedefs cimport hash_t from .tokens cimport Tokens @@ -15,7 +16,7 @@ cpdef enum TagType: cdef class Tagger: cpdef int set_tags(self, Tokens tokens) except -1 - cpdef class_t predict(self, int i, Tokens tokens, object golds=*) except 0 + cpdef class_t predict(self, int i, Tokens tokens, object golds=*) except * cpdef readonly Pool mem cpdef readonly Extractor extractor @@ -23,3 +24,4 @@ cdef class Tagger: cpdef readonly TagType tag_type cpdef readonly list tag_names + cdef dict tagdict diff --git a/spacy/tagger.pyx b/spacy/tagger.pyx index 22732843d..0ae66a844 100644 --- a/spacy/tagger.pyx +++ b/spacy/tagger.pyx @@ -18,7 +18,7 @@ from thinc.features cimport Feature, count_feats NULL_TAG = 0 -def setup_model_dir(tag_type, tag_names, templates, model_dir): +def setup_model_dir(tag_type, tag_names, tag_counts, templates, model_dir): if path.exists(model_dir): shutil.rmtree(model_dir) os.mkdir(model_dir) @@ -26,6 +26,7 @@ def setup_model_dir(tag_type, tag_names, templates, model_dir): 'tag_type': tag_type, 'templates': templates, 'tag_names': tag_names, + 'tag_counts': tag_counts, } with open(path.join(model_dir, 'config.json'), 'w') as file_: json.dump(config, file_) @@ -35,24 +36,19 @@ def train(train_sents, model_dir, nr_iter=10): cdef Tokens tokens cdef Tagger tagger = Tagger(model_dir) cdef int i + cdef class_t guess = 0 + cdef class_t gold for _ in range(nr_iter): n_corr = 0 total = 0 for tokens, golds in train_sents: assert len(tokens) == len(golds), [t.string for t in tokens] for i in range(tokens.length): - if tagger.tag_type == POS: - gold = _get_gold_pos(i, golds) - else: - raise StandardError - - guess = tagger.predict(i, tokens) + gold = golds[i] + guess = tagger.predict(i, tokens, [gold]) tokens.set_tag(i, tagger.tag_type, guess) - if gold is not None: - tagger.tell_answer(gold) - total += 1 - n_corr += guess in gold - #print('%s\t%d\t%d' % (tokens[i].string, guess, gold)) + total += 1 + n_corr += guess == gold print('%.4f' % ((n_corr / total) * 100)) random.shuffle(train_sents) tagger.model.end_training() @@ -96,8 +92,9 @@ cdef class Tagger: templates = cfg['templates'] self.tag_names = cfg['tag_names'] self.tag_type = cfg['tag_type'] + self.tagdict = _make_tag_dict(cfg['tag_counts']) self.extractor = Extractor(templates) - self.model = LinearModel(len(self.tag_names)) + self.model = LinearModel(len(self.tag_names), self.extractor.n_templ+2) if path.exists(path.join(model_dir, 'model')): self.model.load(path.join(model_dir, 'model')) @@ -113,7 +110,7 @@ cdef class Tagger: for i in range(tokens.length): tokens.set_tag(i, self.tag_type, self.predict(i, tokens)) - cpdef class_t predict(self, int i, Tokens tokens, object golds=None) except 0: + cpdef class_t predict(self, int i, Tokens tokens, object golds=None) except *: """Predict the tag of tokens[i]. The tagger remembers the features and prediction, in case you later call tell_answer. @@ -121,16 +118,18 @@ cdef class Tagger: >>> tag = EN.pos_tagger.predict(0, tokens) >>> assert tag == EN.pos_tagger.tag_id('DT') == 5 """ - cdef int n_feats + cdef atom_t sic = tokens.data[i].lex.sic + if sic in self.tagdict: + return self.tagdict[sic] cdef atom_t[N_FIELDS] context - print sizeof(context) fill_context(context, i, tokens.data) + cdef int n_feats cdef Feature* feats = self.extractor.get_feats(context, &n_feats) cdef weight_t* scores = self.model.get_scores(feats, n_feats) - cdef class_t guess = _arg_max(scores, self.nr_class) + guess = _arg_max(scores, self.model.nr_class) if golds is not None and guess not in golds: best = _arg_max_among(scores, golds) - counts = {} + counts = {guess: {}, best: {}} count_feats(counts[guess], feats, n_feats, -1) count_feats(counts[best], feats, n_feats, 1) self.model.update(counts) @@ -145,12 +144,28 @@ cdef class Tagger: return tag_id -cdef class_t _arg_max(weight_t* scores, int n_classes): +def _make_tag_dict(counts): + freq_thresh = 50 + ambiguity_thresh = 0.98 + tagdict = {} + cdef atom_t word + cdef atom_t tag + for word_str, tag_freqs in counts.items(): + tag_str, mode = max(tag_freqs.items(), key=lambda item: item[1]) + n = sum(tag_freqs.values()) + word = int(word_str) + tag = int(tag_str) + if n >= freq_thresh and (float(mode) / n) >= ambiguity_thresh: + tagdict[word] = tag + return tagdict + + +cdef class_t _arg_max(weight_t* scores, int n_classes) except 9000: cdef int best = 0 cdef weight_t score = scores[best] cdef int i for i in range(1, n_classes): - if scores[i] > score: + if scores[i] >= score: score = scores[i] best = i return best