2020-06-26 17:34:12 +00:00
|
|
|
import warnings
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
from ..tokens import Token
|
|
|
|
from ..tokens.doc cimport Doc
|
|
|
|
from ..tokens.span cimport Span
|
|
|
|
from ..tokens.span import Span
|
|
|
|
from ..attrs import IDS
|
|
|
|
from .align cimport Alignment
|
|
|
|
from .iob_utils import biluo_to_iob, biluo_tags_from_offsets, biluo_tags_from_doc
|
|
|
|
from .iob_utils import spans_from_biluo_tags
|
|
|
|
from .align import Alignment
|
|
|
|
from ..errors import Errors, AlignmentError
|
|
|
|
from ..syntax import nonproj
|
|
|
|
from ..util import get_words_and_spaces
|
|
|
|
|
|
|
|
|
|
|
|
cpdef Doc annotations2doc(vocab, tok_annot, doc_annot):
|
|
|
|
""" Create a Doc from dictionaries with token and doc annotations. Assumes ORTH & SPACY are set. """
|
|
|
|
attrs, array = _annot2array(vocab, tok_annot, doc_annot)
|
|
|
|
output = Doc(vocab, words=tok_annot["ORTH"], spaces=tok_annot["SPACY"])
|
|
|
|
if "entities" in doc_annot:
|
|
|
|
_add_entities_to_doc(output, doc_annot["entities"])
|
|
|
|
if array.size:
|
|
|
|
output = output.from_array(attrs, array)
|
|
|
|
# links are currently added with ENT_KB_ID on the token level
|
|
|
|
output.cats.update(doc_annot.get("cats", {}))
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
cdef class Example:
|
|
|
|
def __init__(self, Doc predicted, Doc reference, *, Alignment alignment=None):
|
|
|
|
""" Doc can either be text, or an actual Doc """
|
|
|
|
msg = "Example.__init__ got None for '{arg}'. Requires Doc."
|
|
|
|
if predicted is None:
|
|
|
|
raise TypeError(msg.format(arg="predicted"))
|
|
|
|
if reference is None:
|
|
|
|
raise TypeError(msg.format(arg="reference"))
|
|
|
|
self.x = predicted
|
|
|
|
self.y = reference
|
|
|
|
self._alignment = alignment
|
|
|
|
|
|
|
|
property predicted:
|
|
|
|
def __get__(self):
|
|
|
|
return self.x
|
|
|
|
|
|
|
|
def __set__(self, doc):
|
|
|
|
self.x = doc
|
2020-06-29 11:59:17 +00:00
|
|
|
|
2020-06-26 17:34:12 +00:00
|
|
|
property reference:
|
|
|
|
def __get__(self):
|
|
|
|
return self.y
|
|
|
|
|
|
|
|
def __set__(self, doc):
|
|
|
|
self.y = doc
|
|
|
|
|
|
|
|
def copy(self):
|
|
|
|
return Example(
|
|
|
|
self.x.copy(),
|
|
|
|
self.y.copy()
|
|
|
|
)
|
2020-06-29 11:59:17 +00:00
|
|
|
|
2020-06-26 17:34:12 +00:00
|
|
|
@classmethod
|
|
|
|
def from_dict(cls, Doc predicted, dict example_dict):
|
|
|
|
if example_dict is None:
|
|
|
|
raise ValueError("Example.from_dict expected dict, received None")
|
|
|
|
if not isinstance(predicted, Doc):
|
|
|
|
raise TypeError(f"Argument 1 should be Doc. Got {type(predicted)}")
|
|
|
|
example_dict = _fix_legacy_dict_data(example_dict)
|
|
|
|
tok_dict, doc_dict = _parse_example_dict_data(example_dict)
|
|
|
|
if "ORTH" not in tok_dict:
|
|
|
|
tok_dict["ORTH"] = [tok.text for tok in predicted]
|
|
|
|
tok_dict["SPACY"] = [tok.whitespace_ for tok in predicted]
|
|
|
|
if not _has_field(tok_dict, "SPACY"):
|
2020-06-26 21:42:41 +00:00
|
|
|
spaces = _guess_spaces(predicted.text, tok_dict["ORTH"])
|
2020-06-26 17:34:12 +00:00
|
|
|
return Example(
|
|
|
|
predicted,
|
|
|
|
annotations2doc(predicted.vocab, tok_dict, doc_dict)
|
|
|
|
)
|
2020-06-29 11:59:17 +00:00
|
|
|
|
2020-06-26 17:34:12 +00:00
|
|
|
@property
|
|
|
|
def alignment(self):
|
|
|
|
if self._alignment is None:
|
|
|
|
spacy_words = [token.orth_ for token in self.predicted]
|
|
|
|
gold_words = [token.orth_ for token in self.reference]
|
|
|
|
if gold_words == []:
|
|
|
|
gold_words = spacy_words
|
|
|
|
self._alignment = Alignment(spacy_words, gold_words)
|
|
|
|
return self._alignment
|
|
|
|
|
|
|
|
def get_aligned(self, field, as_string=False):
|
|
|
|
"""Return an aligned array for a token attribute."""
|
|
|
|
i2j_multi = self.alignment.i2j_multi
|
|
|
|
cand_to_gold = self.alignment.cand_to_gold
|
|
|
|
|
|
|
|
vocab = self.reference.vocab
|
|
|
|
gold_values = self.reference.to_array([field])
|
|
|
|
output = [None] * len(self.predicted)
|
|
|
|
for i, gold_i in enumerate(cand_to_gold):
|
|
|
|
if self.predicted[i].text.isspace():
|
|
|
|
output[i] = None
|
|
|
|
if gold_i is None:
|
|
|
|
if i in i2j_multi:
|
|
|
|
output[i] = gold_values[i2j_multi[i]]
|
|
|
|
else:
|
|
|
|
output[i] = None
|
|
|
|
else:
|
|
|
|
output[i] = gold_values[gold_i]
|
|
|
|
if as_string and field not in ["ENT_IOB", "SENT_START"]:
|
|
|
|
output = [vocab.strings[o] if o is not None else o for o in output]
|
|
|
|
return output
|
|
|
|
|
|
|
|
def get_aligned_parse(self, projectivize=True):
|
|
|
|
cand_to_gold = self.alignment.cand_to_gold
|
|
|
|
gold_to_cand = self.alignment.gold_to_cand
|
|
|
|
aligned_heads = [None] * self.x.length
|
|
|
|
aligned_deps = [None] * self.x.length
|
|
|
|
heads = [token.head.i for token in self.y]
|
|
|
|
deps = [token.dep_ for token in self.y]
|
|
|
|
heads, deps = nonproj.projectivize(heads, deps)
|
|
|
|
for cand_i in range(self.x.length):
|
|
|
|
gold_i = cand_to_gold[cand_i]
|
|
|
|
if gold_i is not None: # Alignment found
|
|
|
|
gold_head = gold_to_cand[heads[gold_i]]
|
|
|
|
if gold_head is not None:
|
|
|
|
aligned_heads[cand_i] = gold_head
|
|
|
|
aligned_deps[cand_i] = deps[gold_i]
|
|
|
|
return aligned_heads, aligned_deps
|
|
|
|
|
|
|
|
def get_aligned_ner(self):
|
|
|
|
if not self.y.is_nered:
|
|
|
|
return [None] * len(self.x) # should this be 'missing' instead of 'None' ?
|
|
|
|
x_text = self.x.text
|
|
|
|
# Get a list of entities, and make spans for non-entity tokens.
|
|
|
|
# We then work through the spans in order, trying to find them in
|
|
|
|
# the text and using that to get the offset. Any token that doesn't
|
|
|
|
# get a tag set this way is tagged None.
|
|
|
|
# This could maybe be improved? It at least feels easy to reason about.
|
|
|
|
y_spans = list(self.y.ents)
|
|
|
|
y_spans.sort()
|
|
|
|
x_text_offset = 0
|
|
|
|
x_spans = []
|
|
|
|
for y_span in y_spans:
|
|
|
|
if x_text.count(y_span.text) >= 1:
|
|
|
|
start_char = x_text.index(y_span.text) + x_text_offset
|
|
|
|
end_char = start_char + len(y_span.text)
|
|
|
|
x_span = self.x.char_span(start_char, end_char, label=y_span.label)
|
|
|
|
if x_span is not None:
|
|
|
|
x_spans.append(x_span)
|
|
|
|
x_text = self.x.text[end_char:]
|
|
|
|
x_text_offset = end_char
|
|
|
|
x_tags = biluo_tags_from_offsets(
|
2020-06-29 11:59:17 +00:00
|
|
|
self.x,
|
2020-06-26 17:34:12 +00:00
|
|
|
[(e.start_char, e.end_char, e.label_) for e in x_spans],
|
|
|
|
missing=None
|
|
|
|
)
|
|
|
|
gold_to_cand = self.alignment.gold_to_cand
|
|
|
|
for token in self.y:
|
|
|
|
if token.ent_iob_ == "O":
|
|
|
|
cand_i = gold_to_cand[token.i]
|
|
|
|
if cand_i is not None and x_tags[cand_i] is None:
|
|
|
|
x_tags[cand_i] = "O"
|
|
|
|
i2j_multi = self.alignment.i2j_multi
|
|
|
|
for i, tag in enumerate(x_tags):
|
|
|
|
if tag is None and i in i2j_multi:
|
|
|
|
gold_i = i2j_multi[i]
|
|
|
|
if gold_i is not None and self.y[gold_i].ent_iob_ == "O":
|
|
|
|
x_tags[i] = "O"
|
|
|
|
return x_tags
|
|
|
|
|
|
|
|
def to_dict(self):
|
|
|
|
return {
|
|
|
|
"doc_annotation": {
|
|
|
|
"cats": dict(self.reference.cats),
|
|
|
|
"entities": biluo_tags_from_doc(self.reference),
|
|
|
|
"links": self._links_to_dict()
|
|
|
|
},
|
|
|
|
"token_annotation": {
|
|
|
|
"ids": [t.i+1 for t in self.reference],
|
|
|
|
"words": [t.text for t in self.reference],
|
|
|
|
"tags": [t.tag_ for t in self.reference],
|
|
|
|
"lemmas": [t.lemma_ for t in self.reference],
|
|
|
|
"pos": [t.pos_ for t in self.reference],
|
|
|
|
"morphs": [t.morph_ for t in self.reference],
|
|
|
|
"heads": [t.head.i for t in self.reference],
|
|
|
|
"deps": [t.dep_ for t in self.reference],
|
|
|
|
"sent_starts": [int(bool(t.is_sent_start)) for t in self.reference]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
def _links_to_dict(self):
|
|
|
|
links = {}
|
|
|
|
for ent in self.reference.ents:
|
|
|
|
if ent.kb_id_:
|
|
|
|
links[(ent.start_char, ent.end_char)] = {ent.kb_id_: 1.0}
|
|
|
|
return links
|
|
|
|
|
|
|
|
|
|
|
|
def split_sents(self):
|
|
|
|
""" Split the token annotations into multiple Examples based on
|
|
|
|
sent_starts and return a list of the new Examples"""
|
|
|
|
if not self.reference.is_sentenced:
|
|
|
|
return [self]
|
|
|
|
|
|
|
|
sent_starts = self.get_aligned("SENT_START")
|
|
|
|
sent_starts.append(1) # appending virtual start of a next sentence to facilitate search
|
|
|
|
|
|
|
|
output = []
|
|
|
|
pred_start = 0
|
|
|
|
for sent in self.reference.sents:
|
|
|
|
new_ref = sent.as_doc()
|
|
|
|
pred_end = sent_starts.index(1, pred_start+1) # find where the next sentence starts
|
|
|
|
new_pred = self.predicted[pred_start : pred_end].as_doc()
|
|
|
|
output.append(Example(new_pred, new_ref))
|
|
|
|
pred_start = pred_end
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
property text:
|
|
|
|
def __get__(self):
|
|
|
|
return self.x.text
|
|
|
|
|
|
|
|
def __str__(self):
|
|
|
|
return str(self.to_dict())
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return str(self.to_dict())
|
|
|
|
|
|
|
|
|
|
|
|
def _annot2array(vocab, tok_annot, doc_annot):
|
|
|
|
attrs = []
|
|
|
|
values = []
|
|
|
|
|
|
|
|
for key, value in doc_annot.items():
|
|
|
|
if value:
|
|
|
|
if key == "entities":
|
|
|
|
pass
|
|
|
|
elif key == "links":
|
|
|
|
entities = doc_annot.get("entities", {})
|
|
|
|
if not entities:
|
|
|
|
raise ValueError(Errors.E981)
|
|
|
|
ent_kb_ids = _parse_links(vocab, tok_annot["ORTH"], value, entities)
|
|
|
|
tok_annot["ENT_KB_ID"] = ent_kb_ids
|
|
|
|
elif key == "cats":
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Unknown doc attribute: {key}")
|
|
|
|
|
|
|
|
for key, value in tok_annot.items():
|
|
|
|
if key not in IDS:
|
|
|
|
raise ValueError(f"Unknown token attribute: {key}")
|
|
|
|
elif key in ["ORTH", "SPACY"]:
|
|
|
|
pass
|
|
|
|
elif key == "HEAD":
|
|
|
|
attrs.append(key)
|
|
|
|
values.append([h-i for i, h in enumerate(value)])
|
|
|
|
elif key == "SENT_START":
|
|
|
|
attrs.append(key)
|
|
|
|
values.append(value)
|
|
|
|
elif key == "MORPH":
|
|
|
|
attrs.append(key)
|
|
|
|
values.append([vocab.morphology.add(v) for v in value])
|
|
|
|
else:
|
|
|
|
attrs.append(key)
|
|
|
|
values.append([vocab.strings.add(v) for v in value])
|
|
|
|
|
|
|
|
array = numpy.asarray(values, dtype="uint64")
|
|
|
|
return attrs, array.T
|
|
|
|
|
|
|
|
|
|
|
|
def _add_entities_to_doc(doc, ner_data):
|
|
|
|
if ner_data is None:
|
|
|
|
return
|
|
|
|
elif ner_data == []:
|
|
|
|
doc.ents = []
|
|
|
|
elif isinstance(ner_data[0], tuple):
|
|
|
|
return _add_entities_to_doc(
|
|
|
|
doc,
|
|
|
|
biluo_tags_from_offsets(doc, ner_data)
|
|
|
|
)
|
|
|
|
elif isinstance(ner_data[0], str) or ner_data[0] is None:
|
|
|
|
return _add_entities_to_doc(
|
|
|
|
doc,
|
|
|
|
spans_from_biluo_tags(doc, ner_data)
|
|
|
|
)
|
|
|
|
elif isinstance(ner_data[0], Span):
|
|
|
|
# Ugh, this is super messy. Really hard to set O entities
|
|
|
|
doc.ents = ner_data
|
|
|
|
doc.ents = [span for span in ner_data if span.label_]
|
|
|
|
else:
|
|
|
|
raise ValueError("Unexpected type for NER data")
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_example_dict_data(example_dict):
|
|
|
|
return (
|
|
|
|
example_dict["token_annotation"],
|
|
|
|
example_dict["doc_annotation"]
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def _fix_legacy_dict_data(example_dict):
|
|
|
|
token_dict = example_dict.get("token_annotation", {})
|
|
|
|
doc_dict = example_dict.get("doc_annotation", {})
|
|
|
|
for key, value in example_dict.items():
|
|
|
|
if value:
|
|
|
|
if key in ("token_annotation", "doc_annotation"):
|
|
|
|
pass
|
|
|
|
elif key == "ids":
|
|
|
|
pass
|
|
|
|
elif key in ("cats", "links"):
|
|
|
|
doc_dict[key] = value
|
|
|
|
elif key in ("ner", "entities"):
|
|
|
|
doc_dict["entities"] = value
|
|
|
|
else:
|
|
|
|
token_dict[key] = value
|
|
|
|
# Remap keys
|
|
|
|
remapping = {
|
|
|
|
"words": "ORTH",
|
|
|
|
"tags": "TAG",
|
|
|
|
"pos": "POS",
|
|
|
|
"lemmas": "LEMMA",
|
|
|
|
"deps": "DEP",
|
|
|
|
"heads": "HEAD",
|
|
|
|
"sent_starts": "SENT_START",
|
|
|
|
"morphs": "MORPH",
|
|
|
|
"spaces": "SPACY",
|
|
|
|
}
|
|
|
|
old_token_dict = token_dict
|
|
|
|
token_dict = {}
|
|
|
|
for key, value in old_token_dict.items():
|
|
|
|
if key in ("text", "ids", "brackets"):
|
|
|
|
pass
|
|
|
|
elif key in remapping:
|
|
|
|
token_dict[remapping[key]] = value
|
|
|
|
else:
|
|
|
|
raise KeyError(Errors.E983.format(key=key, dict="token_annotation", keys=remapping.keys()))
|
|
|
|
text = example_dict.get("text", example_dict.get("raw"))
|
2020-06-26 21:46:18 +00:00
|
|
|
if _has_field(token_dict, "ORTH") and not _has_field(token_dict, "SPACY"):
|
2020-06-26 21:42:41 +00:00
|
|
|
token_dict["SPACY"] = _guess_spaces(text, token_dict["ORTH"])
|
2020-06-26 17:34:12 +00:00
|
|
|
if "HEAD" in token_dict and "SENT_START" in token_dict:
|
|
|
|
# If heads are set, we don't also redundantly specify SENT_START.
|
|
|
|
token_dict.pop("SENT_START")
|
|
|
|
warnings.warn("Ignoring annotations for sentence starts, as dependency heads are set")
|
|
|
|
return {
|
|
|
|
"token_annotation": token_dict,
|
|
|
|
"doc_annotation": doc_dict
|
|
|
|
}
|
|
|
|
|
|
|
|
def _has_field(annot, field):
|
|
|
|
if field not in annot:
|
|
|
|
return False
|
|
|
|
elif annot[field] is None:
|
|
|
|
return False
|
|
|
|
elif len(annot[field]) == 0:
|
|
|
|
return False
|
|
|
|
elif all([value is None for value in annot[field]]):
|
|
|
|
return False
|
|
|
|
else:
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
def _parse_ner_tags(biluo_or_offsets, vocab, words, spaces):
|
|
|
|
if isinstance(biluo_or_offsets[0], (list, tuple)):
|
|
|
|
# Convert to biluo if necessary
|
|
|
|
# This is annoying but to convert the offsets we need a Doc
|
|
|
|
# that has the target tokenization.
|
|
|
|
reference = Doc(vocab, words=words, spaces=spaces)
|
|
|
|
biluo = biluo_tags_from_offsets(reference, biluo_or_offsets)
|
|
|
|
else:
|
|
|
|
biluo = biluo_or_offsets
|
|
|
|
ent_iobs = []
|
|
|
|
ent_types = []
|
|
|
|
for iob_tag in biluo_to_iob(biluo):
|
|
|
|
if iob_tag in (None, "-"):
|
|
|
|
ent_iobs.append("")
|
|
|
|
ent_types.append("")
|
|
|
|
else:
|
|
|
|
ent_iobs.append(iob_tag.split("-")[0])
|
|
|
|
if iob_tag.startswith("I") or iob_tag.startswith("B"):
|
|
|
|
ent_types.append(iob_tag.split("-", 1)[1])
|
|
|
|
else:
|
|
|
|
ent_types.append("")
|
|
|
|
return ent_iobs, ent_types
|
|
|
|
|
|
|
|
def _parse_links(vocab, words, links, entities):
|
|
|
|
reference = Doc(vocab, words=words)
|
|
|
|
starts = {token.idx: token.i for token in reference}
|
|
|
|
ends = {token.idx + len(token): token.i for token in reference}
|
|
|
|
ent_kb_ids = ["" for _ in reference]
|
|
|
|
entity_map = [(ent[0], ent[1]) for ent in entities]
|
|
|
|
|
|
|
|
# links annotations need to refer 1-1 to entity annotations - throw error otherwise
|
|
|
|
for index, annot_dict in links.items():
|
|
|
|
start_char, end_char = index
|
|
|
|
if (start_char, end_char) not in entity_map:
|
|
|
|
raise ValueError(Errors.E981)
|
|
|
|
|
|
|
|
for index, annot_dict in links.items():
|
|
|
|
true_kb_ids = []
|
|
|
|
for key, value in annot_dict.items():
|
|
|
|
if value == 1.0:
|
|
|
|
true_kb_ids.append(key)
|
|
|
|
if len(true_kb_ids) > 1:
|
|
|
|
raise ValueError(Errors.E980)
|
|
|
|
|
|
|
|
if len(true_kb_ids) == 1:
|
|
|
|
start_char, end_char = index
|
|
|
|
start_token = starts.get(start_char)
|
|
|
|
end_token = ends.get(end_char)
|
|
|
|
for i in range(start_token, end_token+1):
|
|
|
|
ent_kb_ids[i] = true_kb_ids[0]
|
|
|
|
|
|
|
|
return ent_kb_ids
|
|
|
|
|
|
|
|
|
|
|
|
def _guess_spaces(text, words):
|
|
|
|
if text is None:
|
|
|
|
return [True] * len(words)
|
|
|
|
spaces = []
|
|
|
|
text_pos = 0
|
|
|
|
# align words with text
|
|
|
|
for word in words:
|
|
|
|
try:
|
|
|
|
word_start = text[text_pos:].index(word)
|
|
|
|
except ValueError:
|
|
|
|
spaces.append(True)
|
|
|
|
continue
|
|
|
|
text_pos += word_start + len(word)
|
|
|
|
if text_pos < len(text) and text[text_pos] == " ":
|
|
|
|
spaces.append(True)
|
|
|
|
else:
|
|
|
|
spaces.append(False)
|
|
|
|
return spaces
|