spaCy/spacy/gold/example.pyx

433 lines
15 KiB
Cython
Raw Normal View History

Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 17:34:12 +00:00
import warnings
import numpy
from ..tokens import Token
from ..tokens.doc cimport Doc
from ..tokens.span cimport Span
from ..tokens.span import Span
from ..attrs import IDS
from .align cimport Alignment
from .iob_utils import biluo_to_iob, biluo_tags_from_offsets, biluo_tags_from_doc
from .iob_utils import spans_from_biluo_tags
from .align import Alignment
from ..errors import Errors, AlignmentError
from ..syntax import nonproj
from ..util import get_words_and_spaces
cpdef Doc annotations2doc(vocab, tok_annot, doc_annot):
""" Create a Doc from dictionaries with token and doc annotations. Assumes ORTH & SPACY are set. """
attrs, array = _annot2array(vocab, tok_annot, doc_annot)
output = Doc(vocab, words=tok_annot["ORTH"], spaces=tok_annot["SPACY"])
if "entities" in doc_annot:
_add_entities_to_doc(output, doc_annot["entities"])
if array.size:
output = output.from_array(attrs, array)
# links are currently added with ENT_KB_ID on the token level
output.cats.update(doc_annot.get("cats", {}))
return output
cdef class Example:
def __init__(self, Doc predicted, Doc reference, *, Alignment alignment=None):
""" Doc can either be text, or an actual Doc """
msg = "Example.__init__ got None for '{arg}'. Requires Doc."
if predicted is None:
raise TypeError(msg.format(arg="predicted"))
if reference is None:
raise TypeError(msg.format(arg="reference"))
self.x = predicted
self.y = reference
self._alignment = alignment
property predicted:
def __get__(self):
return self.x
def __set__(self, doc):
self.x = doc
property reference:
def __get__(self):
return self.y
def __set__(self, doc):
self.y = doc
def copy(self):
return Example(
self.x.copy(),
self.y.copy()
)
@classmethod
def from_dict(cls, Doc predicted, dict example_dict):
if example_dict is None:
raise ValueError("Example.from_dict expected dict, received None")
if not isinstance(predicted, Doc):
raise TypeError(f"Argument 1 should be Doc. Got {type(predicted)}")
example_dict = _fix_legacy_dict_data(example_dict)
tok_dict, doc_dict = _parse_example_dict_data(example_dict)
if "ORTH" not in tok_dict:
tok_dict["ORTH"] = [tok.text for tok in predicted]
tok_dict["SPACY"] = [tok.whitespace_ for tok in predicted]
if not _has_field(tok_dict, "SPACY"):
tok_dict["SPACY"] = _guess_spaces(predicted.text, tok_dict["ORTH"])
return Example(
predicted,
annotations2doc(predicted.vocab, tok_dict, doc_dict)
)
@property
def alignment(self):
if self._alignment is None:
spacy_words = [token.orth_ for token in self.predicted]
gold_words = [token.orth_ for token in self.reference]
if gold_words == []:
gold_words = spacy_words
self._alignment = Alignment(spacy_words, gold_words)
return self._alignment
def get_aligned(self, field, as_string=False):
"""Return an aligned array for a token attribute."""
i2j_multi = self.alignment.i2j_multi
cand_to_gold = self.alignment.cand_to_gold
vocab = self.reference.vocab
gold_values = self.reference.to_array([field])
output = [None] * len(self.predicted)
for i, gold_i in enumerate(cand_to_gold):
if self.predicted[i].text.isspace():
output[i] = None
if gold_i is None:
if i in i2j_multi:
output[i] = gold_values[i2j_multi[i]]
else:
output[i] = None
else:
output[i] = gold_values[gold_i]
if as_string and field not in ["ENT_IOB", "SENT_START"]:
output = [vocab.strings[o] if o is not None else o for o in output]
return output
def get_aligned_parse(self, projectivize=True):
cand_to_gold = self.alignment.cand_to_gold
gold_to_cand = self.alignment.gold_to_cand
aligned_heads = [None] * self.x.length
aligned_deps = [None] * self.x.length
heads = [token.head.i for token in self.y]
deps = [token.dep_ for token in self.y]
heads, deps = nonproj.projectivize(heads, deps)
for cand_i in range(self.x.length):
gold_i = cand_to_gold[cand_i]
if gold_i is not None: # Alignment found
gold_head = gold_to_cand[heads[gold_i]]
if gold_head is not None:
aligned_heads[cand_i] = gold_head
aligned_deps[cand_i] = deps[gold_i]
return aligned_heads, aligned_deps
def get_aligned_ner(self):
if not self.y.is_nered:
return [None] * len(self.x) # should this be 'missing' instead of 'None' ?
x_text = self.x.text
# Get a list of entities, and make spans for non-entity tokens.
# We then work through the spans in order, trying to find them in
# the text and using that to get the offset. Any token that doesn't
# get a tag set this way is tagged None.
# This could maybe be improved? It at least feels easy to reason about.
y_spans = list(self.y.ents)
y_spans.sort()
x_text_offset = 0
x_spans = []
for y_span in y_spans:
if x_text.count(y_span.text) >= 1:
start_char = x_text.index(y_span.text) + x_text_offset
end_char = start_char + len(y_span.text)
x_span = self.x.char_span(start_char, end_char, label=y_span.label)
if x_span is not None:
x_spans.append(x_span)
x_text = self.x.text[end_char:]
x_text_offset = end_char
x_tags = biluo_tags_from_offsets(
self.x,
[(e.start_char, e.end_char, e.label_) for e in x_spans],
missing=None
)
gold_to_cand = self.alignment.gold_to_cand
for token in self.y:
if token.ent_iob_ == "O":
cand_i = gold_to_cand[token.i]
if cand_i is not None and x_tags[cand_i] is None:
x_tags[cand_i] = "O"
i2j_multi = self.alignment.i2j_multi
for i, tag in enumerate(x_tags):
if tag is None and i in i2j_multi:
gold_i = i2j_multi[i]
if gold_i is not None and self.y[gold_i].ent_iob_ == "O":
x_tags[i] = "O"
return x_tags
def to_dict(self):
return {
"doc_annotation": {
"cats": dict(self.reference.cats),
"entities": biluo_tags_from_doc(self.reference),
"links": self._links_to_dict()
},
"token_annotation": {
"ids": [t.i+1 for t in self.reference],
"words": [t.text for t in self.reference],
"tags": [t.tag_ for t in self.reference],
"lemmas": [t.lemma_ for t in self.reference],
"pos": [t.pos_ for t in self.reference],
"morphs": [t.morph_ for t in self.reference],
"heads": [t.head.i for t in self.reference],
"deps": [t.dep_ for t in self.reference],
"sent_starts": [int(bool(t.is_sent_start)) for t in self.reference]
}
}
def _links_to_dict(self):
links = {}
for ent in self.reference.ents:
if ent.kb_id_:
links[(ent.start_char, ent.end_char)] = {ent.kb_id_: 1.0}
return links
def split_sents(self):
""" Split the token annotations into multiple Examples based on
sent_starts and return a list of the new Examples"""
if not self.reference.is_sentenced:
return [self]
sent_starts = self.get_aligned("SENT_START")
sent_starts.append(1) # appending virtual start of a next sentence to facilitate search
output = []
pred_start = 0
for sent in self.reference.sents:
new_ref = sent.as_doc()
pred_end = sent_starts.index(1, pred_start+1) # find where the next sentence starts
new_pred = self.predicted[pred_start : pred_end].as_doc()
output.append(Example(new_pred, new_ref))
pred_start = pred_end
return output
property text:
def __get__(self):
return self.x.text
def __str__(self):
return str(self.to_dict())
def __repr__(self):
return str(self.to_dict())
def _annot2array(vocab, tok_annot, doc_annot):
attrs = []
values = []
for key, value in doc_annot.items():
if value:
if key == "entities":
pass
elif key == "links":
entities = doc_annot.get("entities", {})
if not entities:
raise ValueError(Errors.E981)
ent_kb_ids = _parse_links(vocab, tok_annot["ORTH"], value, entities)
tok_annot["ENT_KB_ID"] = ent_kb_ids
elif key == "cats":
pass
else:
raise ValueError(f"Unknown doc attribute: {key}")
for key, value in tok_annot.items():
if key not in IDS:
raise ValueError(f"Unknown token attribute: {key}")
elif key in ["ORTH", "SPACY"]:
pass
elif key == "HEAD":
attrs.append(key)
values.append([h-i for i, h in enumerate(value)])
elif key == "SENT_START":
attrs.append(key)
values.append(value)
elif key == "MORPH":
attrs.append(key)
values.append([vocab.morphology.add(v) for v in value])
else:
attrs.append(key)
values.append([vocab.strings.add(v) for v in value])
array = numpy.asarray(values, dtype="uint64")
return attrs, array.T
def _add_entities_to_doc(doc, ner_data):
if ner_data is None:
return
elif ner_data == []:
doc.ents = []
elif isinstance(ner_data[0], tuple):
return _add_entities_to_doc(
doc,
biluo_tags_from_offsets(doc, ner_data)
)
elif isinstance(ner_data[0], str) or ner_data[0] is None:
return _add_entities_to_doc(
doc,
spans_from_biluo_tags(doc, ner_data)
)
elif isinstance(ner_data[0], Span):
# Ugh, this is super messy. Really hard to set O entities
doc.ents = ner_data
doc.ents = [span for span in ner_data if span.label_]
else:
raise ValueError("Unexpected type for NER data")
def _parse_example_dict_data(example_dict):
return (
example_dict["token_annotation"],
example_dict["doc_annotation"]
)
def _fix_legacy_dict_data(example_dict):
token_dict = example_dict.get("token_annotation", {})
doc_dict = example_dict.get("doc_annotation", {})
for key, value in example_dict.items():
if value:
if key in ("token_annotation", "doc_annotation"):
pass
elif key == "ids":
pass
elif key in ("cats", "links"):
doc_dict[key] = value
elif key in ("ner", "entities"):
doc_dict["entities"] = value
else:
token_dict[key] = value
# Remap keys
remapping = {
"words": "ORTH",
"tags": "TAG",
"pos": "POS",
"lemmas": "LEMMA",
"deps": "DEP",
"heads": "HEAD",
"sent_starts": "SENT_START",
"morphs": "MORPH",
"spaces": "SPACY",
}
old_token_dict = token_dict
token_dict = {}
for key, value in old_token_dict.items():
if key in ("text", "ids", "brackets"):
pass
elif key in remapping:
token_dict[remapping[key]] = value
else:
raise KeyError(Errors.E983.format(key=key, dict="token_annotation", keys=remapping.keys()))
text = example_dict.get("text", example_dict.get("raw"))
if "HEAD" in token_dict and "SENT_START" in token_dict:
# If heads are set, we don't also redundantly specify SENT_START.
token_dict.pop("SENT_START")
warnings.warn("Ignoring annotations for sentence starts, as dependency heads are set")
return {
"token_annotation": token_dict,
"doc_annotation": doc_dict
}
def _has_field(annot, field):
if field not in annot:
return False
elif annot[field] is None:
return False
elif len(annot[field]) == 0:
return False
elif all([value is None for value in annot[field]]):
return False
else:
return True
def _parse_ner_tags(biluo_or_offsets, vocab, words, spaces):
if isinstance(biluo_or_offsets[0], (list, tuple)):
# Convert to biluo if necessary
# This is annoying but to convert the offsets we need a Doc
# that has the target tokenization.
reference = Doc(vocab, words=words, spaces=spaces)
biluo = biluo_tags_from_offsets(reference, biluo_or_offsets)
else:
biluo = biluo_or_offsets
ent_iobs = []
ent_types = []
for iob_tag in biluo_to_iob(biluo):
if iob_tag in (None, "-"):
ent_iobs.append("")
ent_types.append("")
else:
ent_iobs.append(iob_tag.split("-")[0])
if iob_tag.startswith("I") or iob_tag.startswith("B"):
ent_types.append(iob_tag.split("-", 1)[1])
else:
ent_types.append("")
return ent_iobs, ent_types
def _parse_links(vocab, words, links, entities):
reference = Doc(vocab, words=words)
starts = {token.idx: token.i for token in reference}
ends = {token.idx + len(token): token.i for token in reference}
ent_kb_ids = ["" for _ in reference]
entity_map = [(ent[0], ent[1]) for ent in entities]
# links annotations need to refer 1-1 to entity annotations - throw error otherwise
for index, annot_dict in links.items():
start_char, end_char = index
if (start_char, end_char) not in entity_map:
raise ValueError(Errors.E981)
for index, annot_dict in links.items():
true_kb_ids = []
for key, value in annot_dict.items():
if value == 1.0:
true_kb_ids.append(key)
if len(true_kb_ids) > 1:
raise ValueError(Errors.E980)
if len(true_kb_ids) == 1:
start_char, end_char = index
start_token = starts.get(start_char)
end_token = ends.get(end_char)
for i in range(start_token, end_token+1):
ent_kb_ids[i] = true_kb_ids[0]
return ent_kb_ids
def _guess_spaces(text, words):
if text is None:
return [True] * len(words)
spaces = []
text_pos = 0
# align words with text
for word in words:
try:
word_start = text[text_pos:].index(word)
except ValueError:
spaces.append(True)
continue
text_pos += word_start + len(word)
if text_pos < len(text) and text[text_pos] == " ":
spaces.append(True)
else:
spaces.append(False)
return spaces