spaCy/spacy/_ml.py

627 lines
20 KiB
Python
Raw Normal View History

2017-05-28 23:37:57 +00:00
import ujson
2017-10-03 18:07:17 +00:00
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu, SELU
from thinc.i2v import HashEmbed, StaticVectors
from thinc.t2t import ExtractWindow, ParametricAttention
from thinc.t2v import Pooling, max_pool, mean_pool, sum_pool
from thinc.misc import Residual
from thinc.misc import BatchNorm as BN
from thinc.misc import LayerNorm as LN
2017-05-06 18:38:12 +00:00
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
2017-10-03 18:07:17 +00:00
from thinc.api import FeatureExtracter, with_getitem
from thinc.api import uniqued, wrap, flatten_add_lengths, noop
from thinc.linear.linear import LinearModel
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-12 21:09:15 +00:00
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module, copy_array
from thinc.neural._lsuv import svd_orthonormal
2017-10-03 18:07:17 +00:00
2017-07-25 16:57:59 +00:00
import random
2017-08-18 19:55:23 +00:00
import cytoolz
2017-05-05 18:12:03 +00:00
2017-05-08 09:36:37 +00:00
from thinc import describe
from thinc.describe import Dimension, Synapses, Biases, Gradient
from thinc.neural._classes.affine import _set_dimensions_if_needed
import thinc.extra.load_nlp
from thinc.neural._lsuv import svd_orthonormal
2017-09-02 09:41:00 +00:00
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP, CLUSTER
2017-05-18 09:22:20 +00:00
from .tokens.doc import Doc
2017-08-18 19:55:23 +00:00
from . import util
2017-05-04 11:31:40 +00:00
2017-05-08 09:36:37 +00:00
import numpy
2017-05-28 23:37:57 +00:00
import io
2017-05-08 09:36:37 +00:00
2017-10-03 18:29:58 +00:00
# TODO: Unset this once we don't want to support models previous models.
import thinc.neural._classes.layernorm
2017-10-05 01:06:52 +00:00
thinc.neural._classes.layernorm.set_compat_six_eight(False)
2017-10-03 18:29:58 +00:00
2017-09-22 14:38:22 +00:00
VECTORS_KEY = 'spacy_pretrained_vectors'
2017-05-08 09:36:37 +00:00
2017-07-22 18:03:40 +00:00
@layerize
def _flatten_add_lengths(seqs, pad=0, drop=0.):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=pad)
X = ops.flatten(seqs, pad=pad)
return (X, lengths), finish_update
@layerize
def _logistic(X, drop=0.):
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10., X)
X = xp.maximum(X, -10., X)
Y = 1. / (1. + xp.exp(-X))
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1-Y))
return dX
return Y, logistic_bwd
2017-08-18 19:55:23 +00:00
@layerize
def add_tuples(X, drop=0.):
"""Give inputs of sequence pairs, where each sequence is (vals, length),
sum the values, returning a single sequence.
If input is:
((vals1, length), (vals2, length)
Output is:
(vals1+vals2, length)
vals are a single tensor for the whole batch.
"""
(vals1, length1), (vals2, length2) = X
assert length1 == length2
def add_tuples_bwd(dY, sgd=None):
return (dY, dY)
return (vals1+vals2, length), add_tuples_bwd
2017-07-22 18:03:40 +00:00
def _zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
if model.W is not None:
model.W.fill(0.)
return model
2017-08-18 19:55:23 +00:00
2017-07-22 18:03:40 +00:00
@layerize
def _preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs]
ops = Model.ops
lengths = ops.asarray([arr.shape[0] for arr in keys])
keys = ops.xp.concatenate(keys)
vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None
@describe.on_data(_set_dimensions_if_needed,
lambda model, X, y: model.init_weights(model))
2017-05-08 09:36:37 +00:00
@describe.attributes(
nI=Dimension("Input size"),
nF=Dimension("Number of features"),
nO=Dimension("Output size"),
nP=Dimension("Maxout pieces"),
2017-05-08 09:36:37 +00:00
W=Synapses("Weights matrix",
2017-10-25 10:45:21 +00:00
lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI) if obj.nP >= 2
else (obj.nF, obj.nO, obj.nI)),
2017-05-08 09:36:37 +00:00
b=Biases("Bias vector",
2017-10-25 10:45:21 +00:00
lambda obj: (obj.nO, obj.nP) if obj.nP >= 2 else (obj.nO,)),
2017-05-08 09:36:37 +00:00
d_W=Gradient("W"),
d_b=Gradient("b")
)
class PrecomputableAffine(Model):
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
2017-05-08 09:36:37 +00:00
Model.__init__(self, **kwargs)
self.nO = nO
self.nP = nP
2017-05-08 09:36:37 +00:00
self.nI = nI
self.nF = nF
2017-10-20 10:14:52 +00:00
def begin_update(self, X, drop=0.):
2017-10-27 10:18:36 +00:00
Yf = self.ops.dot(X,
self.W.reshape((self.nF*self.nO*self.nP, self.nI)).T)
Yf = Yf.reshape((X.shape[0], self.nF, self.nO, self.nP))
2017-10-19 11:44:49 +00:00
2017-05-08 09:36:37 +00:00
def backward(dY_ids, sgd=None):
dY, ids = dY_ids
Xf = X[ids]
2017-10-27 10:18:36 +00:00
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
2017-10-20 10:14:52 +00:00
2017-10-19 16:42:11 +00:00
self.d_b += dY.sum(axis=0)
2017-10-27 10:18:36 +00:00
dY = dY.reshape((dY.shape[0], self.nO*self.nP))
Wopfi = self.W.transpose((1, 2, 0, 3))
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
Wopfi = Wopfi.reshape((self.nO*self.nP, self.nF * self.nI))
dXf = self.ops.dot(dY.reshape((dY.shape[0], self.nO*self.nP)), Wopfi)
# Reuse the buffer
dWopfi = Wopfi; dWopfi.fill(0.)
self.ops.xp.dot(dY.T, Xf, out=dWopfi)
dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI))
# (o, p, f, i) --> (f, o, p, i)
self.d_W += dWopfi.transpose((2, 0, 1, 3))
2017-05-08 09:36:37 +00:00
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
2017-10-27 10:18:36 +00:00
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
2017-05-08 09:36:37 +00:00
return Yf, backward
@staticmethod
def init_weights(model):
'''This is like the 'layer sequential unit variance', but instead
of taking the actual inputs, we randomly generate whitened data.
Why's this all so complicated? We have a huge number of inputs,
and the maxout unit makes guessing the dynamics tricky. Instead
we set the maxout weights to values that empirically result in
whitened outputs given whitened inputs.
'''
if (model.W**2).sum() != 0.:
return
2017-10-20 10:14:52 +00:00
model.ops.normal_init(model.W, model.nF * model.nI, inplace=True)
ids = numpy.zeros((5000, model.nF), dtype='i')
ids += numpy.asarray(numpy.random.uniform(0, 1000, ids.shape), dtype='i')
tokvecs = numpy.zeros((5000, model.nI), dtype='f')
tokvecs += numpy.random.normal(loc=0., scale=1.,
size=tokvecs.size).reshape(tokvecs.shape)
def predict(ids, tokvecs):
2017-10-27 10:18:36 +00:00
hiddens = model(tokvecs) # (b, f, o, p)
vector = model.ops.allocate((hiddens.shape[0], model.nO, model.nP))
2017-10-27 10:18:36 +00:00
model.ops.xp.add.at(vector, ids, hiddens)
vector += model.b
if model.nP >= 2:
return model.ops.maxout(vector)[0]
else:
return vector * (vector >= 0)
tol_var = 0.01
tol_mean = 0.01
t_max = 10
t_i = 0
for t_i in range(t_max):
acts1 = predict(ids, tokvecs)
var = numpy.var(acts1)
mean = numpy.mean(acts1)
if abs(var - 1.0) >= tol_var:
model.W /= numpy.sqrt(var)
elif abs(mean) >= tol_mean:
model.b -= mean
else:
break
2017-05-08 12:24:43 +00:00
2017-10-03 11:26:55 +00:00
# Thinc's Embed class is a bit broken atm, so drop this here.
from thinc import describe
from thinc.neural._classes.embed import _uniform_init
2017-10-06 03:21:30 +00:00
2017-10-03 11:26:55 +00:00
@describe.attributes(
nV=describe.Dimension("Number of vectors"),
nO=describe.Dimension("Size of output"),
vectors=describe.Weights("Embedding table",
lambda obj: (obj.nV, obj.nO),
_uniform_init(-0.1, 0.1)
),
d_vectors=describe.Gradient("vectors")
)
class Embed(Model):
name = 'embed'
def __init__(self, nO, nV=None, **kwargs):
if nV is not None:
nV += 1
2017-10-03 11:26:55 +00:00
Model.__init__(self, **kwargs)
2017-10-05 00:55:34 +00:00
if 'name' in kwargs:
self.name = kwargs['name']
2017-10-03 11:26:55 +00:00
self.column = kwargs.get('column', 0)
self.nO = nO
self.nV = nV
def predict(self, ids):
if ids.ndim == 2:
ids = ids[:, self.column]
2017-10-06 03:21:30 +00:00
return self.ops.xp.ascontiguousarray(self.vectors[ids], dtype='f')
2017-10-03 11:26:55 +00:00
def begin_update(self, ids, drop=0.):
if ids.ndim == 2:
ids = ids[:, self.column]
2017-10-06 03:21:30 +00:00
vectors = self.ops.xp.ascontiguousarray(self.vectors[ids], dtype='f')
2017-10-03 11:26:55 +00:00
def backprop_embed(d_vectors, sgd=None):
n_vectors = d_vectors.shape[0]
self.ops.scatter_add(self.d_vectors, ids, d_vectors)
if sgd is not None:
sgd(self._mem.weights, self._mem.gradient, key=self.id)
return None
return vectors, backprop_embed
2017-07-19 22:17:17 +00:00
2017-10-03 10:43:09 +00:00
def HistoryFeatures(nr_class, hist_size=8, nr_dim=8):
'''Wrap a model, adding features representing action history.'''
2017-10-06 02:52:28 +00:00
if hist_size == 0:
return layerize(noop())
2017-10-05 00:55:34 +00:00
embed_tables = [Embed(nr_dim, nr_class, column=i, name='embed%d')
for i in range(hist_size)]
embed = chain(concatenate(*embed_tables),
LN(Maxout(hist_size*nr_dim, hist_size*nr_dim)))
2017-10-03 10:43:09 +00:00
ops = embed.ops
def add_history_fwd(vectors_hists, drop=0.):
vectors, hist_ids = vectors_hists
2017-10-06 11:09:18 +00:00
hist_feats, bp_hists = embed.begin_update(hist_ids, drop=drop)
2017-10-03 11:26:55 +00:00
outputs = ops.xp.hstack((vectors, hist_feats))
2017-10-03 10:43:09 +00:00
def add_history_bwd(d_outputs, sgd=None):
d_vectors = d_outputs[:, :vectors.shape[1]]
d_hists = d_outputs[:, vectors.shape[1]:]
2017-10-03 11:26:55 +00:00
bp_hists(d_hists, sgd=sgd)
2017-10-03 10:43:09 +00:00
return embed.ops.xp.ascontiguousarray(d_vectors)
return outputs, add_history_bwd
return wrap(add_history_fwd, embed)
2017-08-18 19:55:23 +00:00
def drop_layer(layer, factor=2.):
def drop_layer_fwd(X, drop=0.):
2017-09-04 14:26:38 +00:00
if drop <= 0.:
2017-08-18 19:55:23 +00:00
return layer.begin_update(X, drop=drop)
else:
2017-09-04 14:26:38 +00:00
coinflip = layer.ops.xp.random.random()
if (coinflip / factor) >= drop:
return layer.begin_update(X, drop=drop)
else:
return X, lambda dX, sgd=None: dX
2017-08-21 21:23:29 +00:00
model = wrap(drop_layer_fwd, layer)
model.predict = layer
return model
2017-08-18 19:55:23 +00:00
2017-09-22 14:38:36 +00:00
def link_vectors_to_models(vocab):
vectors = vocab.vectors
ops = Model.ops
for word in vocab:
if word.orth in vectors.key2row:
word.rank = vectors.key2row[word.orth]
else:
word.rank = 0
data = ops.asarray(vectors.data)
# Set an entry here, so that vectors are accessed by StaticVectors
# (unideal, I know)
thinc.extra.load_nlp.VECTORS[(ops.device, VECTORS_KEY)] = data
2017-08-18 19:55:23 +00:00
def Tok2Vec(width, embed_size, **kwargs):
pretrained_dims = kwargs.get('pretrained_dims', 0)
2017-10-11 07:44:17 +00:00
cnn_maxout_pieces = kwargs.get('cnn_maxout_pieces', 2)
2017-08-18 19:55:23 +00:00
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
2017-09-22 14:38:36 +00:00
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add,
'*': reapply}):
2017-09-06 10:50:58 +00:00
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name='embed_norm')
prefix = HashEmbed(width, embed_size//2, column=cols.index(PREFIX), name='embed_prefix')
suffix = HashEmbed(width, embed_size//2, column=cols.index(SUFFIX), name='embed_suffix')
shape = HashEmbed(width, embed_size//2, column=cols.index(SHAPE), name='embed_shape')
2017-09-22 14:38:36 +00:00
if pretrained_dims is not None and pretrained_dims >= 1:
glove = StaticVectors(VECTORS_KEY, width, column=cols.index(ID))
embed = uniqued(
(glove | norm | prefix | suffix | shape)
>> LN(Maxout(width, width*5, pieces=3)), column=5)
else:
embed = uniqued(
(norm | prefix | suffix | shape)
>> LN(Maxout(width, width*4, pieces=3)), column=5)
2017-09-21 00:14:41 +00:00
convolution = Residual(
ExtractWindow(nW=1)
>> LN(Maxout(width, width*3, pieces=cnn_maxout_pieces))
)
2017-09-18 20:00:05 +00:00
2017-09-22 14:38:36 +00:00
tok2vec = (
FeatureExtracter(cols)
2017-10-27 10:18:36 +00:00
>> with_flatten(embed >> (convolution ** 4), pad=4)
2017-09-22 14:38:36 +00:00
)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width
tok2vec.embed = embed
return tok2vec
2017-05-04 11:31:40 +00:00
def reapply(layer, n_times):
def reapply_fwd(X, drop=0.):
backprops = []
for i in range(n_times):
Y, backprop = layer.begin_update(X, drop=drop)
X = Y
backprops.append(backprop)
def reapply_bwd(dY, sgd=None):
dX = None
for backprop in reversed(backprops):
dY = backprop(dY, sgd=sgd)
if dX is None:
dX = dY
else:
dX += dY
return dX
return Y, reapply_bwd
return wrap(reapply_fwd, layer)
def asarray(ops, dtype):
def forward(X, drop=0.):
return ops.asarray(X, dtype=dtype), None
return layerize(forward)
def _divide_array(X, size):
parts = []
index = 0
while index < len(X):
parts.append(X[index : index + size])
index += size
return parts
2017-05-04 11:31:40 +00:00
def get_col(idx):
assert idx >= 0, idx
2017-05-04 11:31:40 +00:00
def forward(X, drop=0.):
assert idx >= 0, idx
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-12 21:09:15 +00:00
if isinstance(X, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
2017-05-06 18:38:12 +00:00
def backward(y, sgd=None):
assert idx >= 0, idx
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-12 21:09:15 +00:00
dX = ops.allocate(X.shape)
2017-05-06 18:38:12 +00:00
dX[:, idx] += y
return dX
return output, backward
2017-05-04 11:31:40 +00:00
return layerize(forward)
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-12 21:09:15 +00:00
def zero_init(model):
def _hook(self, X, y=None):
self.W.fill(0)
model.on_data_hooks.append(_hook)
return model
def doc2feats(cols=None):
2017-08-18 19:55:23 +00:00
if cols is None:
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
def forward(docs, drop=0.):
2017-05-18 09:22:20 +00:00
feats = []
for doc in docs:
feats.append(doc.to_array(cols))
return feats, None
2017-05-06 14:47:15 +00:00
model = layerize(forward)
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-12 21:09:15 +00:00
model.cols = cols
2017-05-06 14:47:15 +00:00
return model
2017-05-06 18:38:12 +00:00
def print_shape(prefix):
def forward(X, drop=0.):
return X, lambda dX, **kwargs: dX
return layerize(forward)
2017-05-07 01:57:26 +00:00
2017-05-06 18:38:12 +00:00
@layerize
def get_token_vectors(tokens_attrs_vectors, drop=0.):
ops = Model.ops
tokens, attrs, vectors = tokens_attrs_vectors
def backward(d_output, sgd=None):
return (tokens, d_output)
return vectors, backward
2017-09-04 14:26:38 +00:00
@layerize
def flatten(seqs, drop=0.):
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-12 21:09:15 +00:00
if isinstance(seqs[0], numpy.ndarray):
ops = NumpyOps()
elif hasattr(CupyOps.xp, 'ndarray') and isinstance(seqs[0], CupyOps.xp.ndarray):
Update draft of parser neural network model Model is good, but code is messy. Currently requires Chainer, which may cause the build to fail on machines without a GPU. Outline of the model: We first predict context-sensitive vectors for each word in the input: (embed_lower | embed_prefix | embed_suffix | embed_shape) >> Maxout(token_width) >> convolution ** 4 This convolutional layer is shared between the tagger and the parser. This prevents the parser from needing tag features. To boost the representation, we make a "super tag" with POS, morphology and dependency label. The tagger predicts this by adding a softmax layer onto the convolutional layer --- so, we're teaching the convolutional layer to give us a representation that's one affine transform from this informative lexical information. This is obviously good for the parser (which backprops to the convolutions too). The parser model makes a state vector by concatenating the vector representations for its context tokens. Current results suggest few context tokens works well. Maybe this is a bug. The current context tokens: * S0, S1, S2: Top three words on the stack * B0, B1: First two words of the buffer * S0L1, S0L2: Leftmost and second leftmost children of S0 * S0R1, S0R2: Rightmost and second rightmost children of S0 * S1L1, S1L2, S1R2, S1R, B0L1, B0L2: Likewise for S1 and B0 This makes the state vector quite long: 13*T, where T is the token vector width (128 is working well). Fortunately, there's a way to structure the computation to save some expense (and make it more GPU friendly). The parser typically visits 2*N states for a sentence of length N (although it may visit more, if it back-tracks with a non-monotonic transition). A naive implementation would require 2*N (B, 13*T) @ (13*T, H) matrix multiplications for a batch of size B. We can instead perform one (B*N, T) @ (T, 13*H) multiplication, to pre-compute the hidden weights for each positional feature wrt the words in the batch. (Note that our token vectors come from the CNN -- so we can't play this trick over the vocabulary. That's how Stanford's NN parser works --- and why its model is so big.) This pre-computation strategy allows a nice compromise between GPU-friendliness and implementation simplicity. The CNN and the wide lower layer are computed on the GPU, and then the precomputed hidden weights are moved to the CPU, before we start the transition-based parsing process. This makes a lot of things much easier. We don't have to worry about variable-length batch sizes, and we don't have to implement the dynamic oracle in CUDA to train. Currently the parser's loss function is multilabel log loss, as the dynamic oracle allows multiple states to be 0 cost. This is defined as: (exp(score) / Z) - (exp(score) / gZ) Where gZ is the sum of the scores assigned to gold classes. I'm very interested in regressing on the cost directly, but so far this isn't working well. Machinery is in place for beam-search, which has been working well for the linear model. Beam search should benefit greatly from the pre-computation trick.
2017-05-12 21:09:15 +00:00
ops = CupyOps()
else:
raise ValueError("Unable to flatten sequence of type %s" % type(seqs[0]))
2017-05-07 01:57:26 +00:00
lengths = [len(seq) for seq in seqs]
def finish_update(d_X, sgd=None):
2017-05-07 01:57:26 +00:00
return ops.unflatten(d_X, lengths)
X = ops.xp.vstack(seqs)
return X, finish_update
2017-07-19 22:17:17 +00:00
@layerize
def logistic(X, drop=0.):
xp = get_array_module(X)
if not isinstance(X, xp.ndarray):
X = xp.asarray(X)
# Clip to range (-10, 10)
X = xp.minimum(X, 10., X)
X = xp.maximum(X, -10., X)
Y = 1. / (1. + xp.exp(-X))
def logistic_bwd(dY, sgd=None):
dX = dY * (Y * (1-Y))
return dX
return Y, logistic_bwd
def zero_init(model):
def _zero_init_impl(self, X, y):
self.W.fill(0)
model.on_data_hooks.append(_zero_init_impl)
return model
@layerize
def preprocess_doc(docs, drop=0.):
keys = [doc.to_array([LOWER]) for doc in docs]
ops = Model.ops
lengths = ops.asarray([arr.shape[0] for arr in keys])
keys = ops.xp.concatenate(keys)
vals = ops.allocate(keys.shape[0]) + 1
return (keys, vals, lengths), None
2017-10-27 10:16:41 +00:00
2017-08-18 19:55:23 +00:00
def getitem(i):
def getitem_fwd(X, drop=0.):
return X[i], None
return layerize(getitem_fwd)
2017-10-27 10:16:41 +00:00
2017-09-21 18:07:26 +00:00
def build_tagger_model(nr_class, **cfg):
2017-09-28 13:07:41 +00:00
embed_size = util.env_opt('embed_size', 7000)
2017-09-21 18:07:26 +00:00
if 'token_vector_width' in cfg:
token_vector_width = cfg['token_vector_width']
else:
2017-09-23 00:58:54 +00:00
token_vector_width = util.env_opt('token_vector_width', 128)
2017-09-21 18:07:26 +00:00
pretrained_dims = cfg.get('pretrained_dims', 0)
2017-08-18 19:55:23 +00:00
with Model.define_operators({'>>': chain, '+': add}):
if 'tok2vec' in cfg:
tok2vec = cfg['tok2vec']
else:
tok2vec = Tok2Vec(token_vector_width, embed_size,
pretrained_dims=pretrained_dims)
2017-09-23 00:58:54 +00:00
model = (
tok2vec
2017-09-23 00:58:54 +00:00
>> with_flatten(Softmax(nr_class, token_vector_width))
2017-08-18 19:55:23 +00:00
)
model.nI = None
model.tok2vec = tok2vec
2017-08-18 19:55:23 +00:00
return model
@layerize
def SpacyVectors(docs, drop=0.):
xp = get_array_module(docs[0].vocab.vectors.data)
width = docs[0].vocab.vectors.data.shape[1]
batch = []
for doc in docs:
indices = numpy.zeros((len(doc),), dtype='i')
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
vectors = doc.vocab.vectors.data[indices]
batch.append(vectors)
return batch, None
2017-07-19 22:17:17 +00:00
def build_text_classifier(nr_class, width=64, **cfg):
2017-09-02 12:56:30 +00:00
nr_vector = cfg.get('nr_vector', 5000)
pretrained_dims = cfg.get('pretrained_dims', 0)
with Model.define_operators({'>>': chain, '+': add, '|': concatenate,
'**': clone}):
2017-09-02 12:56:30 +00:00
if cfg.get('low_data'):
model = (
SpacyVectors
>> flatten_add_lengths
2017-09-02 13:17:32 +00:00
>> with_getitem(0,
Affine(width, pretrained_dims)
2017-09-02 13:17:32 +00:00
)
2017-09-02 12:56:30 +00:00
>> ParametricAttention(width)
>> Pooling(sum_pool)
>> Residual(ReLu(width, width)) ** 2
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
>> logistic
)
return model
2017-07-19 22:17:17 +00:00
2017-09-02 12:56:30 +00:00
lower = HashEmbed(width, nr_vector, column=1)
prefix = HashEmbed(width//2, nr_vector, column=2)
suffix = HashEmbed(width//2, nr_vector, column=3)
shape = HashEmbed(width//2, nr_vector, column=4)
trained_vectors = (
FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID])
>> with_flatten(
2017-07-25 16:57:59 +00:00
uniqued(
2017-09-02 09:41:00 +00:00
(lower | prefix | suffix | shape)
2017-09-02 12:56:30 +00:00
>> LN(Maxout(width, width+(width//2)*3)),
2017-09-02 09:41:00 +00:00
column=0
)
2017-07-19 22:17:17 +00:00
)
)
if pretrained_dims:
static_vectors = (
SpacyVectors
>> with_flatten(Affine(width, pretrained_dims))
)
# TODO Make concatenate support lists
vectors = concatenate_lists(trained_vectors, static_vectors)
vectors_width = width*2
else:
vectors = trained_vectors
vectors_width = width
static_vectors = None
cnn_model = (
vectors
2017-09-02 12:56:30 +00:00
>> with_flatten(
LN(Maxout(width, vectors_width))
2017-09-02 12:56:30 +00:00
>> Residual(
2017-10-04 13:15:53 +00:00
(ExtractWindow(nW=1) >> LN(Maxout(width, width*3)))
2017-09-02 12:56:30 +00:00
) ** 2, pad=2
2017-09-02 09:41:00 +00:00
)
2017-09-02 12:56:30 +00:00
>> flatten_add_lengths
>> ParametricAttention(width)
2017-07-25 16:57:59 +00:00
>> Pooling(sum_pool)
2017-09-02 12:56:30 +00:00
>> Residual(zero_init(Maxout(width, width)))
2017-07-25 16:57:59 +00:00
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
)
linear_model = (
_preprocess_doc
2017-07-25 16:57:59 +00:00
>> LinearModel(nr_class, drop_factor=0.)
)
model = (
2017-07-25 16:57:59 +00:00
(linear_model | cnn_model)
>> zero_init(Affine(nr_class, nr_class*2, drop_factor=0.0))
2017-07-19 22:17:17 +00:00
>> logistic
)
model.nO = nr_class
2017-07-19 22:17:17 +00:00
model.lsuv = False
return model
@layerize
def flatten(seqs, drop=0.):
ops = Model.ops
lengths = ops.asarray([len(seq) for seq in seqs], dtype='i')
def finish_update(d_X, sgd=None):
return ops.unflatten(d_X, lengths, pad=0)
X = ops.flatten(seqs, pad=0)
return X, finish_update
def concatenate_lists(*layers, **kwargs): # pragma: no cover
'''Compose two or more models `f`, `g`, etc, such that their outputs are
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
'''
if not layers:
return noop()
drop_factor = kwargs.get('drop_factor', 1.0)
ops = layers[0].ops
layers = [chain(layer, flatten) for layer in layers]
concat = concatenate(*layers)
def concatenate_lists_fwd(Xs, drop=0.):
drop *= drop_factor
lengths = ops.asarray([len(X) for X in Xs], dtype='i')
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
ys = ops.unflatten(flat_y, lengths)
def concatenate_lists_bwd(d_ys, sgd=None):
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
return ys, concatenate_lists_bwd
model = wrap(concatenate_lists_fwd, concat)
return model