mirror of https://github.com/explosion/spaCy.git
Improve integration of NN parser, to support unified training API
This commit is contained in:
parent
48de4ed49f
commit
a9edb3aa1d
28
spacy/_ml.py
28
spacy/_ml.py
|
@ -118,6 +118,29 @@ class PrecomputableMaxouts(Model):
|
|||
return dXf
|
||||
return Yfp, backward
|
||||
|
||||
def Tok2Vec(width, embed_size, preprocess=None):
|
||||
cols = [LOWER, PREFIX, SUFFIX, SHAPE]
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
||||
lower = get_col(cols.index(LOWER)) >> HashEmbed(width, embed_size)
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2)
|
||||
|
||||
tok2vec = (
|
||||
flatten
|
||||
>> (lower | prefix | suffix | shape )
|
||||
>> Maxout(width, width*4, pieces=3)
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
)
|
||||
if preprocess is not None:
|
||||
tok2vec = preprocess >> tok2vec
|
||||
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
||||
tok2vec.nO = width
|
||||
return tok2vec
|
||||
|
||||
|
||||
def get_col(idx):
|
||||
def forward(X, drop=0.):
|
||||
|
@ -125,7 +148,6 @@ def get_col(idx):
|
|||
ops = NumpyOps()
|
||||
else:
|
||||
ops = CupyOps()
|
||||
assert len(X.shape) <= 3
|
||||
output = ops.xp.ascontiguousarray(X[:, idx])
|
||||
def backward(y, sgd=None):
|
||||
dX = ops.allocate(X.shape)
|
||||
|
@ -171,8 +193,10 @@ def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
|||
def flatten(seqs, drop=0.):
|
||||
if isinstance(seqs[0], numpy.ndarray):
|
||||
ops = NumpyOps()
|
||||
else:
|
||||
elif hasattr(CupyOps.xp, 'ndarray') and isinstance(seqs[0], CupyOps.xp.ndarray):
|
||||
ops = CupyOps()
|
||||
else:
|
||||
raise ValueError("Unable to flatten sequence of type %s" % type(seqs[0]))
|
||||
lengths = [len(seq) for seq in seqs]
|
||||
def finish_update(d_X, sgd=None):
|
||||
return ops.unflatten(d_X, lengths)
|
||||
|
|
|
@ -64,10 +64,15 @@ def train_model(Language, train_data, dev_data, output_path, tagger_cfg, parser_
|
|||
|
||||
with Language.train(output_path, train_data,
|
||||
pos=tagger_cfg, deps=parser_cfg, ner=entity_cfg) as trainer:
|
||||
|
||||
for itn, epoch in enumerate(trainer.epochs(n_iter, augment_data=None)):
|
||||
for doc, gold in epoch:
|
||||
trainer.update(doc, gold)
|
||||
dev_scores = trainer.evaluate(dev_data).scores if dev_data else defaultdict(float)
|
||||
for docs, golds in partition_all(12, epoch):
|
||||
trainer.update(docs, golds)
|
||||
|
||||
if dev_data:
|
||||
dev_scores = trainer.evaluate(dev_data).scores
|
||||
else:
|
||||
defaultdict(float)
|
||||
print_progress(itn, trainer.nlp.parser.model.nr_weight,
|
||||
trainer.nlp.parser.model.nr_active_feat,
|
||||
**dev_scores)
|
||||
|
|
|
@ -247,6 +247,7 @@ class Language(object):
|
|||
self.tokenizer = self.Defaults.create_tokenizer(self) \
|
||||
if 'tokenizer' not in overrides \
|
||||
else overrides['tokenizer']
|
||||
|
||||
self.tagger = self.Defaults.create_tagger(self) \
|
||||
if 'tagger' not in overrides \
|
||||
else overrides['tagger']
|
||||
|
|
|
@ -27,40 +27,26 @@ from thinc.neural._classes.resnet import Residual
|
|||
from thinc.neural._classes.batchnorm import BatchNorm as BN
|
||||
|
||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
from ._ml import flatten, get_col, doc2feats
|
||||
from ._ml import Tok2Vec, flatten, get_col, doc2feats
|
||||
|
||||
|
||||
|
||||
class TokenVectorEncoder(object):
|
||||
'''Assign position-sensitive vectors to tokens, using a CNN or RNN.'''
|
||||
def __init__(self, vocab, token_vector_width, **cfg):
|
||||
|
||||
@classmethod
|
||||
def Model(cls, width=128, embed_size=5000, **cfg):
|
||||
return Tok2Vec(width, embed_size, preprocess=False)
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
self.vocab = vocab
|
||||
self.doc2feats = doc2feats()
|
||||
self.model = self.build_model(vocab.lang, token_vector_width, **cfg)
|
||||
self.tagger = chain(
|
||||
self.model,
|
||||
Softmax(self.vocab.morphology.n_tags,
|
||||
token_vector_width))
|
||||
|
||||
def build_model(self, lang, width, embed_size=5000, **cfg):
|
||||
cols = self.doc2feats.cols
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
||||
lower = get_col(cols.index(LOWER)) >> (HashEmbed(width, embed_size)
|
||||
+HashEmbed(width, embed_size))
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size//2)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2)
|
||||
|
||||
tok2vec = (
|
||||
flatten
|
||||
>> (lower | prefix | suffix | shape )
|
||||
>> Maxout(width, pieces=3)
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
)
|
||||
return tok2vec
|
||||
self.model = self.Model() if model is True else model
|
||||
if self.model not in (None, False):
|
||||
self.tagger = chain(
|
||||
self.model,
|
||||
Softmax(self.vocab.morphology.n_tags,
|
||||
self.model.nO))
|
||||
|
||||
def pipe(self, docs):
|
||||
docs = list(docs)
|
||||
|
|
|
@ -23,6 +23,7 @@ cdef cppclass StateC:
|
|||
Entity* _ents
|
||||
TokenC _empty_token
|
||||
int length
|
||||
int offset
|
||||
int _s_i
|
||||
int _b_i
|
||||
int _e_i
|
||||
|
|
|
@ -10,9 +10,8 @@ from ._state cimport StateC
|
|||
|
||||
cdef class Parser:
|
||||
cdef readonly Vocab vocab
|
||||
cdef readonly object model
|
||||
cdef public object model
|
||||
cdef readonly TransitionSystem moves
|
||||
cdef readonly object cfg
|
||||
cdef public object feature_maps
|
||||
|
||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
# cython: infer_types=True
|
||||
# cython: profile=True
|
||||
# cython: cdivision=True
|
||||
# cython: boundscheck=False
|
||||
# coding: utf-8
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
|
@ -30,11 +32,12 @@ from preshed.maps cimport MapStruct
|
|||
from preshed.maps cimport map_get
|
||||
|
||||
from thinc.api import layerize, chain
|
||||
from thinc.neural import BatchNorm, Model, Affine, ELU, ReLu, Maxout
|
||||
from thinc.neural import Model, Affine, ELU, ReLu, Maxout
|
||||
from thinc.neural.ops import NumpyOps
|
||||
|
||||
from ..util import get_cuda_stream
|
||||
from ..util import get_async, get_cuda_stream
|
||||
from .._ml import zero_init, PrecomputableAffine, PrecomputableMaxouts
|
||||
from .._ml import Tok2Vec, doc2feats
|
||||
|
||||
from . import _parse_features
|
||||
from ._parse_features cimport CONTEXT_SIZE
|
||||
|
@ -61,8 +64,7 @@ def set_debug(val):
|
|||
DEBUG = val
|
||||
|
||||
|
||||
def get_greedy_model_for_batch(batch_size, tokvecs, lower_model, cuda_stream=None,
|
||||
drop=0.):
|
||||
cdef class precompute_hiddens:
|
||||
'''Allow a model to be "primed" by pre-computing input features in bulk.
|
||||
|
||||
This is used for the parser, where we want to take a batch of documents,
|
||||
|
@ -79,95 +81,88 @@ def get_greedy_model_for_batch(batch_size, tokvecs, lower_model, cuda_stream=Non
|
|||
we can do all our hard maths up front, packed into large multiplications,
|
||||
and do the hard-to-program parsing on the CPU.
|
||||
'''
|
||||
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
|
||||
cdef np.ndarray cached
|
||||
if not isinstance(gpu_cached, numpy.ndarray):
|
||||
cached = gpu_cached.get(stream=cuda_stream)
|
||||
else:
|
||||
cached = gpu_cached
|
||||
nF = gpu_cached.shape[1]
|
||||
nO = gpu_cached.shape[2]
|
||||
nP = gpu_cached.shape[3]
|
||||
ops = lower_model.ops
|
||||
features = numpy.zeros((batch_size, nO, nP), dtype='f')
|
||||
synchronized = False
|
||||
cdef int nF, nO, nP
|
||||
cdef bint _is_synchronized
|
||||
cdef public object ops
|
||||
cdef np.ndarray _features
|
||||
cdef np.ndarray _cached
|
||||
cdef object _cuda_stream
|
||||
cdef object _bp_hiddens
|
||||
|
||||
def forward(token_ids, drop=0.):
|
||||
nonlocal synchronized
|
||||
if not synchronized and cuda_stream is not None:
|
||||
cuda_stream.synchronize()
|
||||
synchronized = True
|
||||
# This is tricky, but:
|
||||
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None, drop=0.):
|
||||
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
|
||||
cdef np.ndarray cached
|
||||
if not isinstance(gpu_cached, numpy.ndarray):
|
||||
# Note the passing of cuda_stream here: it lets
|
||||
# cupy make the copy asynchronously.
|
||||
# We then have to block before first use.
|
||||
cached = gpu_cached.get(stream=cuda_stream)
|
||||
else:
|
||||
cached = gpu_cached
|
||||
self.nF = cached.shape[1]
|
||||
self.nO = cached.shape[2]
|
||||
self.nP = cached.shape[3]
|
||||
self.ops = lower_model.ops
|
||||
self._features = numpy.zeros((batch_size, self.nO, self.nP), dtype='f')
|
||||
self._is_synchronized = False
|
||||
self._cuda_stream = cuda_stream
|
||||
self._cached = cached
|
||||
self._bp_hiddens = bp_features
|
||||
|
||||
def __call__(self, X):
|
||||
return self.begin_update(X)[0]
|
||||
|
||||
def begin_update(self, token_ids, drop=0.):
|
||||
self._features.fill(0)
|
||||
if not self._is_synchronized \
|
||||
and self._cuda_stream is not None:
|
||||
self._cuda_stream.synchronize()
|
||||
self._synchronized = True
|
||||
# This is tricky, but (assuming GPU available);
|
||||
# - Input to forward on CPU
|
||||
# - Output from forward on CPU
|
||||
# - Input to backward on GPU!
|
||||
# - Output from backward on GPU
|
||||
nonlocal features
|
||||
features = features[:len(token_ids)]
|
||||
features.fill(0)
|
||||
cdef float[:, :, ::1] feats = features
|
||||
cdef np.ndarray state_vector = self._features[:len(token_ids)]
|
||||
cdef np.ndarray hiddens = self._cached
|
||||
bp_hiddens = self._bp_hiddens
|
||||
|
||||
cdef int[:, ::1] ids = token_ids
|
||||
_sum_features(<float*>&feats[0,0,0],
|
||||
<float*>cached.data, &ids[0,0],
|
||||
token_ids.shape[0], nF, nO*nP)
|
||||
self._sum_features(<float*>state_vector.data,
|
||||
<float*>hiddens.data, &ids[0,0],
|
||||
token_ids.shape[0], self.nF, self.nO*self.nP)
|
||||
|
||||
if nP >= 2:
|
||||
best, which = ops.maxout(features)
|
||||
else:
|
||||
best = features.reshape((features.shape[0], features.shape[1]))
|
||||
which = None
|
||||
output, bp_output = self._apply_nonlinearity(state_vector)
|
||||
|
||||
def backward(d_best, sgd=None):
|
||||
def backward(d_output, sgd=None):
|
||||
# This will usually be on GPU
|
||||
if isinstance(d_best, numpy.ndarray):
|
||||
d_best = ops.xp.array(d_best)
|
||||
if nP >= 2:
|
||||
d_features = ops.backprop_maxout(d_best, which, nP)
|
||||
else:
|
||||
d_features = d_best.reshape((d_best.shape[0], d_best.shape[1], 1))
|
||||
d_tokens = bp_features((d_features, token_ids), sgd)
|
||||
if isinstance(d_output, numpy.ndarray):
|
||||
d_output = self.ops.xp.array(d_output)
|
||||
d_state_vector = bp_output(d_output, sgd)
|
||||
d_tokens = bp_hiddens((d_state_vector, token_ids), sgd)
|
||||
return d_tokens
|
||||
return output, backward
|
||||
|
||||
return best, backward
|
||||
def _apply_nonlinearity(self, X):
|
||||
if self.nP < 2:
|
||||
return X.reshape(X.shape[:2]), lambda dX, sgd=None: dX.reshape(X.shape)
|
||||
best, which = self.ops.maxout(X)
|
||||
return best, lambda dX, sgd=None: self.ops.backprop_maxout(dX, which, self.nP)
|
||||
|
||||
return forward
|
||||
|
||||
|
||||
cdef void _sum_features(float* output,
|
||||
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
||||
cdef int idx, b, f, i
|
||||
cdef const float* feature
|
||||
for b in range(B):
|
||||
for f in range(F):
|
||||
if token_ids[f] < 0:
|
||||
continue
|
||||
idx = token_ids[f] * F * O + f*O
|
||||
feature = &cached[idx]
|
||||
for i in range(O):
|
||||
output[i] += feature[i]
|
||||
output += O
|
||||
token_ids += F
|
||||
|
||||
|
||||
def get_batch_loss(TransitionSystem moves, states, golds, float[:, ::1] scores):
|
||||
cdef StateClass state
|
||||
cdef GoldParse gold
|
||||
cdef Pool mem = Pool()
|
||||
cdef int i
|
||||
is_valid = <int*>mem.alloc(moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(moves.n_moves, sizeof(float))
|
||||
cdef np.ndarray d_scores = numpy.zeros((len(states), moves.n_moves), dtype='f',
|
||||
order='c')
|
||||
c_d_scores = <float*>d_scores.data
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
memset(is_valid, 0, moves.n_moves * sizeof(int))
|
||||
memset(costs, 0, moves.n_moves * sizeof(float))
|
||||
moves.set_costs(is_valid, costs, state, gold)
|
||||
cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
#cpu_regression_loss(c_d_scores,
|
||||
# costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
c_d_scores += d_scores.shape[1]
|
||||
return d_scores
|
||||
cdef void _sum_features(self, float* output,
|
||||
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
||||
cdef int idx, b, f, i
|
||||
cdef const float* feature
|
||||
for b in range(B):
|
||||
for f in range(F):
|
||||
if token_ids[f] < 0:
|
||||
continue
|
||||
idx = token_ids[f] * F * O + f*O
|
||||
feature = &cached[idx]
|
||||
for i in range(O):
|
||||
output[i] += feature[i]
|
||||
output += O
|
||||
token_ids += F
|
||||
|
||||
|
||||
cdef void cpu_log_loss(float* d_scores,
|
||||
|
@ -217,121 +212,62 @@ cdef void cpu_regression_loss(float* d_scores,
|
|||
d_scores[i] = diff
|
||||
|
||||
|
||||
def init_states(TransitionSystem moves, docs):
|
||||
cdef Doc doc
|
||||
cdef StateClass state
|
||||
offsets = []
|
||||
states = []
|
||||
offset = 0
|
||||
for i, doc in enumerate(docs):
|
||||
state = StateClass.init(doc.c, doc.length)
|
||||
moves.initialize_state(state.c)
|
||||
states.append(state)
|
||||
offsets.append(offset)
|
||||
offset += len(doc)
|
||||
return states, offsets
|
||||
|
||||
|
||||
def extract_token_ids(states, offsets=None, nF=1, nB=0, nS=2, nL=0, nR=0):
|
||||
cdef StateClass state
|
||||
cdef int n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
ids = numpy.zeros((len(states), n_tokens), dtype='i', order='c')
|
||||
if offsets is None:
|
||||
offsets = [0] * len(states)
|
||||
for i, (state, offset) in enumerate(zip(states, offsets)):
|
||||
state.set_context_tokens(ids[i], nF, nB, nS, nL, nR)
|
||||
ids[i] += (ids[i] >= 0) * offset
|
||||
return ids
|
||||
|
||||
|
||||
_n_iter = 0
|
||||
@layerize
|
||||
def print_mean_variance(X, drop=0.):
|
||||
global _n_iter
|
||||
_n_iter += 1
|
||||
fwd_iter = _n_iter
|
||||
means = X.mean(axis=0)
|
||||
variance = X.var(axis=0)
|
||||
print(fwd_iter, "M", ', '.join(('%.2f' % m) for m in means))
|
||||
print(fwd_iter, "V", ', '.join(('%.2f' % m) for m in variance))
|
||||
def backward(dX, sgd=None):
|
||||
means = dX.mean(axis=0)
|
||||
variance = dX.var(axis=0)
|
||||
print(fwd_iter, "dM", ', '.join(('%.2f' % m) for m in means))
|
||||
print(fwd_iter, "dV", ', '.join(('%.2f' % m) for m in variance))
|
||||
return X, backward
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
"""
|
||||
Base class of the DependencyParser and EntityRecognizer.
|
||||
"""
|
||||
@classmethod
|
||||
def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
|
||||
"""
|
||||
Load the statistical model from the supplied path.
|
||||
def Model(cls, nr_class, tok2vec=None, hidden_width=128, **cfg):
|
||||
if tok2vec is None:
|
||||
tok2vec = Tok2Vec(hidden_width, 5000, preprocess=doc2feats())
|
||||
token_vector_width = tok2vec.nO
|
||||
nr_context_tokens = StateClass.nr_context_tokens()
|
||||
lower = PrecomputableMaxouts(hidden_width,
|
||||
nF=nr_context_tokens,
|
||||
nI=token_vector_width,
|
||||
pieces=cfg.get('maxout_pieces', 1))
|
||||
|
||||
Arguments:
|
||||
path (Path):
|
||||
The path to load from.
|
||||
vocab (Vocab):
|
||||
The vocabulary. Must be shared by the documents to be processed.
|
||||
require (bool):
|
||||
Whether to raise an error if the files are not found.
|
||||
Returns (Parser):
|
||||
The newly constructed object.
|
||||
"""
|
||||
with (path / 'config.json').open() as file_:
|
||||
cfg = ujson.load(file_)
|
||||
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
|
||||
if (path / 'model').exists():
|
||||
self.model.load(str(path / 'model'))
|
||||
elif require:
|
||||
raise IOError(
|
||||
"Required file %s/model not found when loading" % str(path))
|
||||
return self
|
||||
with Model.use_device('cpu'):
|
||||
upper = chain(
|
||||
Maxout(hidden_width),
|
||||
zero_init(Affine(nr_class))
|
||||
)
|
||||
# TODO: This is an unfortunate hack atm!
|
||||
# Used to set input dimensions in network.
|
||||
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
|
||||
upper.begin_training(upper.ops.allocate((500, hidden_width)))
|
||||
return tok2vec, lower, upper
|
||||
|
||||
def __init__(self, Vocab vocab, TransitionSystem=None, model=None, **cfg):
|
||||
@classmethod
|
||||
def Moves(cls):
|
||||
return TransitionSystem()
|
||||
|
||||
def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
|
||||
"""
|
||||
Create a Parser.
|
||||
|
||||
Arguments:
|
||||
vocab (Vocab):
|
||||
The vocabulary object. Must be shared with documents to be processed.
|
||||
model (thinc Model):
|
||||
The statistical model.
|
||||
Returns (Parser):
|
||||
The newly constructed object.
|
||||
The value is set to the .vocab attribute.
|
||||
moves (TransitionSystem):
|
||||
Defines how the parse-state is created, updated and evaluated.
|
||||
The value is set to the .moves attribute unless True (default),
|
||||
in which case a new instance is created with Parser.Moves().
|
||||
model (object):
|
||||
Defines how the parse-state is created, updated and evaluated.
|
||||
The value is set to the .model attribute unless True (default),
|
||||
in which case a new instance is created with Parser.Model().
|
||||
**cfg:
|
||||
Arbitrary configuration parameters. Set to the .cfg attribute
|
||||
"""
|
||||
if TransitionSystem is None:
|
||||
TransitionSystem = self.TransitionSystem
|
||||
self.vocab = vocab
|
||||
cfg['actions'] = TransitionSystem.get_actions(**cfg)
|
||||
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
|
||||
if model is None:
|
||||
self.model, self.feature_maps = self.build_model(**cfg)
|
||||
else:
|
||||
self.model, self.feature_maps = model
|
||||
self.moves = self.Moves(self.vocab) if moves is True else moves
|
||||
self.model = self.Model(self.moves.n_moves) if model is True else model
|
||||
self.cfg = cfg
|
||||
|
||||
def __reduce__(self):
|
||||
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
||||
|
||||
def build_model(self,
|
||||
hidden_width=128, token_vector_width=96, nr_vector=1000,
|
||||
nF=1, nB=1, nS=1, nL=1, nR=1, **cfg):
|
||||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
with Model.use_device('cpu'):
|
||||
upper = chain(
|
||||
Maxout(hidden_width, hidden_width),
|
||||
#print_mean_variance,
|
||||
zero_init(Affine(self.moves.n_moves, hidden_width)))
|
||||
assert isinstance(upper.ops, NumpyOps)
|
||||
lower = PrecomputableMaxouts(hidden_width, nF=nr_context_tokens, nI=token_vector_width,
|
||||
pieces=cfg.get('maxout_pieces', 1))
|
||||
lower.begin_training(lower.ops.allocate((500, token_vector_width)))
|
||||
upper.begin_training(upper.ops.allocate((500, hidden_width)))
|
||||
return upper, lower
|
||||
return (Parser, (self.vocab, self.moves, self.model, self.cfg), None, None)
|
||||
|
||||
def __call__(self, Doc tokens):
|
||||
"""
|
||||
|
@ -356,168 +292,145 @@ cdef class Parser:
|
|||
The number of threads with which to work on the buffer in parallel.
|
||||
Yields (Doc): Documents, in order.
|
||||
"""
|
||||
cdef StateClass state
|
||||
cdef Doc doc
|
||||
queue = []
|
||||
for doc in stream:
|
||||
queue.append(doc)
|
||||
if len(queue) == batch_size:
|
||||
self.parse_batch(queue)
|
||||
for doc in queue:
|
||||
self.moves.finalize_doc(doc)
|
||||
yield doc
|
||||
queue = []
|
||||
if queue:
|
||||
self.parse_batch(queue)
|
||||
for doc in queue:
|
||||
for docs in cytoolz.partition_all(batch_size, stream):
|
||||
docs = list(docs)
|
||||
states = self.parse_batch(docs)
|
||||
for state, doc in zip(states, docs):
|
||||
self.moves.finalize_state(state.c)
|
||||
for i in range(doc.length):
|
||||
doc.c[i] = state.c._sent[i]
|
||||
self.moves.finalize_doc(doc)
|
||||
yield doc
|
||||
|
||||
def parse_batch(self, docs_tokvecs):
|
||||
cdef:
|
||||
int nC
|
||||
Doc doc
|
||||
StateClass state
|
||||
np.ndarray py_scores
|
||||
int[500] is_valid # Hacks for now
|
||||
def parse_batch(self, docs):
|
||||
cuda_stream = get_cuda_stream()
|
||||
|
||||
tokvecs = self.model[0](docs)
|
||||
states = self.moves.init_batch(docs)
|
||||
state2vec, vec2scores = self.get_batch_model(len(states), tokvecs,
|
||||
cuda_stream, 0.0)
|
||||
|
||||
todo = [st for st in states if not st.is_final()]
|
||||
while todo:
|
||||
token_ids = self.get_token_ids(states)
|
||||
vectors = state2vec(token_ids)
|
||||
scores = vec2scores(vectors)
|
||||
self.transition_batch(states, scores)
|
||||
todo = [st for st in states if not st.is_final()]
|
||||
self.finish_batch(states, docs)
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None):
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
return self.update([docs], [golds], drop=drop, sgd=sgd)
|
||||
|
||||
cuda_stream = get_cuda_stream()
|
||||
docs, tokvecs = docs_tokvecs
|
||||
lower_model = get_greedy_model_for_batch(len(docs), tokvecs, self.feature_maps,
|
||||
cuda_stream)
|
||||
upper_model = self.model
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
|
||||
states, offsets = init_states(self.moves, docs)
|
||||
all_states = list(states)
|
||||
todo = [st for st in zip(states, offsets) if not st[0].py_is_final()]
|
||||
tokvecs, bp_tokvecs = self.model[0].begin_update(docs, drop=drop)
|
||||
states = self.moves.init_batch(docs)
|
||||
state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream,
|
||||
drop)
|
||||
|
||||
todo = [(s, g) for s, g in zip(states, golds) if not s.is_final()]
|
||||
|
||||
backprops = []
|
||||
cdef float loss = 0.
|
||||
while todo:
|
||||
states, offsets = zip(*todo)
|
||||
token_ids = extract_token_ids(states, offsets=offsets)
|
||||
states, golds = zip(*todo)
|
||||
|
||||
py_scores = upper_model(lower_model(token_ids)[0])
|
||||
scores = <float*>py_scores.data
|
||||
nC = py_scores.shape[1]
|
||||
for state, offset in zip(states, offsets):
|
||||
self.moves.set_valid(is_valid, state.c)
|
||||
guess = arg_max_if_valid(scores, is_valid, nC)
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
scores += nC
|
||||
todo = [st for st in todo if not st[0].py_is_final()]
|
||||
token_ids = self.get_token_ids(states)
|
||||
vector, bp_vector = state2vec.begin_update(token_ids, drop=drop)
|
||||
scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
|
||||
|
||||
for state, doc in zip(all_states, docs):
|
||||
d_scores = self.get_batch_loss(states, golds, scores)
|
||||
d_vector = bp_scores(d_scores, sgd=sgd)
|
||||
loss += (d_scores**2).sum()
|
||||
|
||||
if not isinstance(tokvecs, state2vec.ops.xp.ndarray):
|
||||
backprops.append((token_ids, d_vector, bp_vector))
|
||||
else:
|
||||
# Move token_ids and d_vector to CPU, asynchronously
|
||||
backprops.append((
|
||||
get_async(cuda_stream, token_ids),
|
||||
get_async(cuda_stream, d_vector),
|
||||
bp_vector
|
||||
))
|
||||
self.transition_batch(states, scores)
|
||||
todo = [st for st in todo if not st[0].is_final()]
|
||||
# Tells CUDA to block, so our async copies complete.
|
||||
if cuda_stream is not None:
|
||||
cuda_stream.synchronize()
|
||||
d_tokvecs = state2vec.ops.allocate(tokvecs.shape)
|
||||
xp = state2vec.ops.xp # Handle for numpy/cupy
|
||||
for token_ids, d_vector, bp_vector in backprops:
|
||||
d_state_features = bp_vector(d_vector, sgd=sgd)
|
||||
active_feats = token_ids * (token_ids >= 0)
|
||||
active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1))
|
||||
if hasattr(xp, 'scatter_add'):
|
||||
xp.scatter_add(d_tokvecs,
|
||||
token_ids, d_state_features * active_feats)
|
||||
else:
|
||||
xp.add.at(d_tokvecs,
|
||||
token_ids, d_state_features * active_feats)
|
||||
bp_tokvecs(d_tokvecs, sgd)
|
||||
return loss
|
||||
|
||||
def get_batch_model(self, batch_size, tokvecs, stream, dropout):
|
||||
state2vec = precompute_hiddens(batch_size, tokvecs,
|
||||
self.model[1], stream, drop=dropout)
|
||||
return state2vec, self.model[-1]
|
||||
|
||||
def get_token_ids(self, states):
|
||||
cdef StateClass state
|
||||
cdef int n_tokens = states[0].nr_context_tokens()
|
||||
ids = numpy.zeros((len(states), n_tokens), dtype='i', order='c')
|
||||
for i, state in enumerate(states):
|
||||
state.set_context_tokens(ids[i])
|
||||
return ids
|
||||
|
||||
def transition_batch(self, states, float[:, ::1] scores):
|
||||
cdef StateClass state
|
||||
cdef int[500] is_valid # TODO: Unhack
|
||||
cdef float* c_scores = &scores[0, 0]
|
||||
for state in states:
|
||||
self.moves.set_valid(is_valid, state.c)
|
||||
guess = arg_max_if_valid(c_scores, is_valid, scores.shape[1])
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
c_scores += scores.shape[1]
|
||||
|
||||
def get_batch_loss(self, states, golds, float[:, ::1] scores):
|
||||
cdef StateClass state
|
||||
cdef GoldParse gold
|
||||
cdef Pool mem = Pool()
|
||||
cdef int i
|
||||
is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
|
||||
cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),
|
||||
dtype='f', order='C')
|
||||
c_d_scores = <float*>d_scores.data
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
memset(is_valid, 0, self.moves.n_moves * sizeof(int))
|
||||
memset(costs, 0, self.moves.n_moves * sizeof(float))
|
||||
self.moves.set_costs(is_valid, costs, state, gold)
|
||||
cpu_log_loss(c_d_scores,
|
||||
costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
c_d_scores += d_scores.shape[1]
|
||||
return d_scores
|
||||
|
||||
def finish_batch(self, states, docs):
|
||||
cdef StateClass state
|
||||
cdef Doc doc
|
||||
for state, doc in zip(states, docs):
|
||||
self.moves.finalize_state(state.c)
|
||||
for i in range(doc.length):
|
||||
doc.c[i] = state.c._sent[i]
|
||||
self.moves.finalize_doc(doc)
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None):
|
||||
cdef:
|
||||
int nC
|
||||
Doc doc
|
||||
StateClass state
|
||||
np.ndarray scores
|
||||
|
||||
docs, tokvecs = docs_tokvecs
|
||||
cuda_stream = get_cuda_stream()
|
||||
lower_model = get_greedy_model_for_batch(len(docs),
|
||||
tokvecs, self.feature_maps, cuda_stream=cuda_stream,
|
||||
drop=drop)
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
return self.update(([docs], tokvecs), [golds], drop=drop)
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
|
||||
states, offsets = init_states(self.moves, docs)
|
||||
|
||||
todo = zip(states, offsets, golds)
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
|
||||
cdef Pool mem = Pool()
|
||||
is_valid = <int*>mem.alloc(len(states) * self.moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(len(states) * self.moves.n_moves, sizeof(float))
|
||||
|
||||
upper_model = self.model
|
||||
d_tokens = self.feature_maps.ops.allocate(tokvecs.shape)
|
||||
backprops = []
|
||||
n_tokens = tokvecs.shape[0]
|
||||
nF = self.feature_maps.nF
|
||||
loss = 0.
|
||||
total = 1e-4
|
||||
follow_gold = False
|
||||
cupy = self.feature_maps.ops.xp
|
||||
while len(todo) >= 4:
|
||||
states, offsets, golds = zip(*todo)
|
||||
|
||||
token_ids = extract_token_ids(states, offsets=offsets)
|
||||
lower, bp_lower = lower_model(token_ids, drop=drop)
|
||||
scores, bp_scores = upper_model.begin_update(lower, drop=drop)
|
||||
|
||||
d_scores = get_batch_loss(self.moves, states, golds, scores)
|
||||
loss += numpy.abs(d_scores).sum()
|
||||
total += d_scores.shape[0]
|
||||
d_lower = bp_scores(d_scores, sgd=sgd)
|
||||
|
||||
if isinstance(tokvecs, cupy.ndarray):
|
||||
gpu_tok_ids = cupy.ndarray(token_ids.shape, dtype='i', order='C')
|
||||
gpu_d_lower = cupy.ndarray(d_lower.shape, dtype='f', order='C')
|
||||
gpu_tok_ids.set(token_ids, stream=cuda_stream)
|
||||
gpu_d_lower.set(d_lower, stream=cuda_stream)
|
||||
backprops.append((gpu_tok_ids, gpu_d_lower, bp_lower))
|
||||
else:
|
||||
backprops.append((token_ids, d_lower, bp_lower))
|
||||
|
||||
c_scores = <float*>scores.data
|
||||
for state, gold in zip(states, golds):
|
||||
if follow_gold:
|
||||
self.moves.set_costs(is_valid, costs, state, gold)
|
||||
guess = arg_max_if_gold(c_scores, costs, is_valid, scores.shape[1])
|
||||
else:
|
||||
self.moves.set_valid(is_valid, state.c)
|
||||
guess = arg_max_if_valid(c_scores, is_valid, scores.shape[1])
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
c_scores += scores.shape[1]
|
||||
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
# This tells CUDA to block --- so we know our copies are complete.
|
||||
cuda_stream.synchronize()
|
||||
for token_ids, d_lower, bp_lower in backprops:
|
||||
d_state_features = bp_lower(d_lower, sgd=sgd)
|
||||
active_feats = token_ids * (token_ids >= 0)
|
||||
active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1))
|
||||
if hasattr(self.feature_maps.ops.xp, 'scatter_add'):
|
||||
self.feature_maps.ops.xp.scatter_add(d_tokens,
|
||||
token_ids, d_state_features * active_feats)
|
||||
else:
|
||||
self.model.ops.xp.add.at(d_tokens,
|
||||
token_ids, d_state_features * active_feats)
|
||||
return d_tokens, loss / total
|
||||
|
||||
def step_through(self, Doc doc, GoldParse gold=None):
|
||||
"""
|
||||
Set up a stepwise state, to introspect and control the transition sequence.
|
||||
|
||||
Arguments:
|
||||
doc (Doc): The document to step through.
|
||||
gold (GoldParse): Optional gold parse
|
||||
Returns (StepwiseState):
|
||||
A state object, to step through the annotation process.
|
||||
"""
|
||||
return StepwiseState(self, doc, gold=gold)
|
||||
|
||||
def from_transition_sequence(self, Doc doc, sequence):
|
||||
"""Control the annotations on a document by specifying a transition sequence
|
||||
to follow.
|
||||
|
||||
Arguments:
|
||||
doc (Doc): The document to annotate.
|
||||
sequence: A sequence of action names, as unicode strings.
|
||||
Returns: None
|
||||
"""
|
||||
with self.step_through(doc) as stepwise:
|
||||
for transition in sequence:
|
||||
stepwise.transition(transition)
|
||||
|
||||
def add_label(self, label):
|
||||
# Doesn't set label into serializer -- subclasses override it to do that.
|
||||
for action in self.moves.action_types:
|
||||
|
@ -528,108 +441,6 @@ cdef class Parser:
|
|||
self.cfg.setdefault('extra_labels', []).append(label)
|
||||
|
||||
|
||||
cdef class StepwiseState:
|
||||
cdef readonly StateClass stcls
|
||||
cdef readonly Example eg
|
||||
cdef readonly Doc doc
|
||||
cdef readonly GoldParse gold
|
||||
cdef readonly Parser parser
|
||||
|
||||
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
|
||||
self.parser = parser
|
||||
self.doc = doc
|
||||
if gold is not None:
|
||||
self.gold = gold
|
||||
self.parser.moves.preprocess_gold(self.gold)
|
||||
else:
|
||||
self.gold = GoldParse(doc)
|
||||
self.stcls = StateClass.init(doc.c, doc.length)
|
||||
self.parser.moves.initialize_state(self.stcls.c)
|
||||
self.eg = Example(
|
||||
nr_class=self.parser.moves.n_moves,
|
||||
nr_atom=CONTEXT_SIZE,
|
||||
nr_feat=self.parser.model.nr_feat)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
self.finish()
|
||||
|
||||
@property
|
||||
def is_final(self):
|
||||
return self.stcls.is_final()
|
||||
|
||||
@property
|
||||
def stack(self):
|
||||
return self.stcls.stack
|
||||
|
||||
@property
|
||||
def queue(self):
|
||||
return self.stcls.queue
|
||||
|
||||
@property
|
||||
def heads(self):
|
||||
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
|
||||
|
||||
@property
|
||||
def deps(self):
|
||||
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
|
||||
for i in range(self.stcls.c.length)]
|
||||
|
||||
@property
|
||||
def costs(self):
|
||||
"""
|
||||
Find the action-costs for the current state.
|
||||
"""
|
||||
if not self.gold:
|
||||
raise ValueError("Can't set costs: No GoldParse provided")
|
||||
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
|
||||
self.stcls, self.gold)
|
||||
costs = {}
|
||||
for i in range(self.parser.moves.n_moves):
|
||||
if not self.eg.c.is_valid[i]:
|
||||
continue
|
||||
transition = self.parser.moves.c[i]
|
||||
name = self.parser.moves.move_name(transition.move, transition.label)
|
||||
costs[name] = self.eg.c.costs[i]
|
||||
return costs
|
||||
|
||||
def predict(self):
|
||||
self.eg.reset()
|
||||
#self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
|
||||
# self.stcls.c)
|
||||
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
|
||||
#self.parser.model.set_scoresC(self.eg.c.scores,
|
||||
# self.eg.c.features, self.eg.c.nr_feat)
|
||||
|
||||
cdef Transition action = self.parser.moves.c[self.eg.guess]
|
||||
return self.parser.moves.move_name(action.move, action.label)
|
||||
|
||||
def transition(self, action_name=None):
|
||||
if action_name is None:
|
||||
action_name = self.predict()
|
||||
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
|
||||
if action_name == '_':
|
||||
action_name = self.predict()
|
||||
action = self.parser.moves.lookup_transition(action_name)
|
||||
elif action_name == 'L' or action_name == 'R':
|
||||
self.predict()
|
||||
move = moves[action_name]
|
||||
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
|
||||
self.eg.c.nr_class)
|
||||
action = self.parser.moves.c[clas]
|
||||
else:
|
||||
action = self.parser.moves.lookup_transition(action_name)
|
||||
action.do(self.stcls.c, action.label)
|
||||
|
||||
def finish(self):
|
||||
if self.stcls.is_final():
|
||||
self.parser.moves.finalize_state(self.stcls.c)
|
||||
self.doc.set_parse(self.stcls.c._sent)
|
||||
self.parser.moves.finalize_doc(self.doc)
|
||||
|
||||
|
||||
class ParserStateError(ValueError):
|
||||
def __init__(self, doc):
|
||||
ValueError.__init__(self,
|
||||
|
|
|
@ -9,17 +9,24 @@ from ..vocab cimport EMPTY_LEXEME
|
|||
from ._state cimport StateC
|
||||
|
||||
|
||||
@cython.final
|
||||
cdef class StateClass:
|
||||
cdef Pool mem
|
||||
cdef StateC* c
|
||||
|
||||
@staticmethod
|
||||
cdef inline StateClass init(const TokenC* sent, int length):
|
||||
cdef StateClass self = StateClass(length)
|
||||
cdef StateClass self = StateClass()
|
||||
self.c = new StateC(sent, length)
|
||||
return self
|
||||
|
||||
@staticmethod
|
||||
cdef inline StateClass init_offset(const TokenC* sent, int length, int
|
||||
offset):
|
||||
cdef StateClass self = StateClass()
|
||||
self.c = new StateC(sent, length)
|
||||
self.c.offset = offset
|
||||
return self
|
||||
|
||||
cdef inline int S(self, int i) nogil:
|
||||
return self.c.S(i)
|
||||
|
||||
|
@ -68,9 +75,6 @@ cdef class StateClass:
|
|||
cdef inline bint at_break(self) nogil:
|
||||
return self.c.at_break()
|
||||
|
||||
cdef inline bint is_final(self) nogil:
|
||||
return self.c.is_final()
|
||||
|
||||
cdef inline bint has_head(self, int i) nogil:
|
||||
return self.c.has_head(i)
|
||||
|
||||
|
@ -97,22 +101,22 @@ cdef class StateClass:
|
|||
|
||||
cdef inline void pop(self) nogil:
|
||||
self.c.pop()
|
||||
|
||||
|
||||
cdef inline void unshift(self) nogil:
|
||||
self.c.unshift()
|
||||
|
||||
cdef inline void add_arc(self, int head, int child, int label) nogil:
|
||||
self.c.add_arc(head, child, label)
|
||||
|
||||
|
||||
cdef inline void del_arc(self, int head, int child) nogil:
|
||||
self.c.del_arc(head, child)
|
||||
|
||||
cdef inline void open_ent(self, int label) nogil:
|
||||
self.c.open_ent(label)
|
||||
|
||||
|
||||
cdef inline void close_ent(self) nogil:
|
||||
self.c.close_ent()
|
||||
|
||||
|
||||
cdef inline void set_ent_tag(self, int i, int ent_iob, int ent_type) nogil:
|
||||
self.c.set_ent_tag(i, ent_iob, ent_type)
|
||||
|
||||
|
|
|
@ -12,12 +12,16 @@ from ..symbols cimport punct
|
|||
from ..attrs cimport IS_SPACE
|
||||
from ..attrs cimport attr_id_t
|
||||
from ..tokens.token cimport Token
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
|
||||
cdef class StateClass:
|
||||
def __init__(self, int length):
|
||||
def __init__(self, Doc doc=None, int offset=0):
|
||||
cdef Pool mem = Pool()
|
||||
self.mem = mem
|
||||
if doc is not None:
|
||||
self.c = new StateC(doc.c, doc.length)
|
||||
self.c.offset = offset
|
||||
|
||||
def __dealloc__(self):
|
||||
del self.c
|
||||
|
@ -34,7 +38,7 @@ cdef class StateClass:
|
|||
def token_vector_lenth(self):
|
||||
return self.doc.tensor.shape[1]
|
||||
|
||||
def py_is_final(self):
|
||||
def is_final(self):
|
||||
return self.c.is_final()
|
||||
|
||||
def print_state(self, words):
|
||||
|
@ -47,11 +51,10 @@ cdef class StateClass:
|
|||
return ' '.join((third, second, top, '|', n0, n1))
|
||||
|
||||
@classmethod
|
||||
def nr_context_tokens(cls, int nF, int nB, int nS, int nL, int nR):
|
||||
def nr_context_tokens(cls):
|
||||
return 13
|
||||
|
||||
def set_context_tokens(self, int[:] output, nF=1, nB=0, nS=2,
|
||||
nL=2, nR=2):
|
||||
def set_context_tokens(self, int[::1] output):
|
||||
output[0] = self.B(0)
|
||||
output[1] = self.B(1)
|
||||
output[2] = self.S(0)
|
||||
|
@ -67,21 +70,6 @@ cdef class StateClass:
|
|||
output[11] = self.R(self.S(1), 1)
|
||||
output[12] = self.R(self.S(1), 2)
|
||||
|
||||
def set_attributes(self, uint64_t[:, :] vals, int[:] tokens, int[:] names):
|
||||
cdef int i, j, tok_i
|
||||
for i in range(tokens.shape[0]):
|
||||
tok_i = tokens[i]
|
||||
if tok_i >= 0:
|
||||
token = &self.c._sent[tok_i]
|
||||
for j in range(names.shape[0]):
|
||||
vals[i, j] = Token.get_struct_attr(token, <attr_id_t>names[j])
|
||||
else:
|
||||
vals[i] = 0
|
||||
|
||||
def set_token_vectors(self, tokvecs,
|
||||
all_tokvecs, int[:] indices):
|
||||
for i in range(indices.shape[0]):
|
||||
if indices[i] >= 0:
|
||||
tokvecs[i] = all_tokvecs[indices[i]]
|
||||
else:
|
||||
tokvecs[i] = 0
|
||||
for i in range(13):
|
||||
if output[i] != -1:
|
||||
output[i] += self.c.offset
|
||||
|
|
|
@ -58,6 +58,17 @@ cdef class TransitionSystem:
|
|||
(self.strings, labels_by_action, self.freqs),
|
||||
None, None)
|
||||
|
||||
def init_batch(self, docs):
|
||||
cdef StateClass state
|
||||
states = []
|
||||
offset = 0
|
||||
for doc in docs:
|
||||
state = StateClass(doc, offset=offset)
|
||||
self.initialize_state(state.c)
|
||||
states.append(state)
|
||||
offset += len(doc)
|
||||
return states
|
||||
|
||||
cdef int initialize_state(self, StateC* state) nogil:
|
||||
pass
|
||||
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
from thinc.neural import Model
|
||||
from mock import Mock
|
||||
import pytest
|
||||
import numpy
|
||||
|
||||
from ..._ml import chain, Tok2Vec, doc2feats
|
||||
from ...vocab import Vocab
|
||||
from ...pipeline import TokenVectorEncoder
|
||||
from ...syntax.arc_eager import ArcEager
|
||||
from ...syntax.nn_parser import Parser
|
||||
from ...tokens.doc import Doc
|
||||
from ...gold import GoldParse
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vocab():
|
||||
return Vocab()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def arc_eager(vocab):
|
||||
actions = ArcEager.get_actions(left_labels=['L'], right_labels=['R'])
|
||||
return ArcEager(vocab.strings, actions)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def tok2vec():
|
||||
return Tok2Vec(8, 100, preprocess=doc2feats())
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def parser(vocab, arc_eager):
|
||||
return Parser(vocab, moves=arc_eager, model=None)
|
||||
|
||||
@pytest.fixture
|
||||
def model(arc_eager, tok2vec):
|
||||
return Parser.Model(arc_eager.n_moves, tok2vec)
|
||||
|
||||
@pytest.fixture
|
||||
def doc(vocab):
|
||||
return Doc(vocab, words=['a', 'b', 'c'])
|
||||
|
||||
@pytest.fixture
|
||||
def gold(doc):
|
||||
return GoldParse(doc, heads=[1, 1, 1], deps=['L', 'ROOT', 'R'])
|
||||
def test_can_init_nn_parser(parser):
|
||||
assert parser.model is None
|
||||
|
||||
|
||||
def test_build_model(parser, tok2vec):
|
||||
parser.model = Parser.Model(parser.moves.n_moves, tok2vec)
|
||||
assert parser.model is not None
|
||||
|
||||
|
||||
def test_predict_doc(parser, model, doc):
|
||||
parser.model = model
|
||||
parser(doc)
|
||||
|
||||
|
||||
def test_update_doc(parser, model, doc, gold):
|
||||
parser.model = model
|
||||
loss1 = parser.update(doc, gold)
|
||||
assert loss1 > 0
|
||||
loss2 = parser.update(doc, gold)
|
||||
assert loss2 == loss1
|
||||
def optimize(weights, gradient, key=None):
|
||||
weights -= 0.001 * gradient
|
||||
loss3 = parser.update(doc, gold, sgd=optimize)
|
||||
loss4 = parser.update(doc, gold, sgd=optimize)
|
||||
assert loss3 < loss2
|
|
@ -3,6 +3,10 @@ from __future__ import absolute_import, unicode_literals
|
|||
|
||||
import random
|
||||
import tqdm
|
||||
|
||||
from thinc.neural.optimizers import Adam
|
||||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
|
||||
from .gold import GoldParse, merge_sents
|
||||
from .scorer import Scorer
|
||||
|
||||
|
@ -44,10 +48,12 @@ class Trainer(object):
|
|||
yield _epoch(indices)
|
||||
self.nr_epoch += 1
|
||||
|
||||
def update(self, doc, gold):
|
||||
def update(self, docs, golds, drop=0.):
|
||||
for process in self.nlp.pipeline:
|
||||
if hasattr(process, 'update'):
|
||||
loss = process.update(doc, gold, itn=self.nr_epoch)
|
||||
loss = process.update(doc, gold, sgd=self.sgd, drop=drop,
|
||||
itn=self.nr_epoch)
|
||||
self.sgd.finish_update()
|
||||
else:
|
||||
process(doc)
|
||||
return doc
|
||||
|
|
|
@ -15,7 +15,15 @@ from .compat import path2str, basestring_, input_, unicode_
|
|||
|
||||
LANGUAGES = {}
|
||||
_data_path = Path(__file__).parent / 'data'
|
||||
try:
|
||||
from cupy.cuda.stream import Stream as CudaStream
|
||||
except ImportError:
|
||||
CudaStream = None
|
||||
|
||||
try:
|
||||
import cupy
|
||||
except ImportError:
|
||||
cupy = None
|
||||
|
||||
def set_lang_class(name, cls):
|
||||
global LANGUAGES
|
||||
|
@ -152,11 +160,14 @@ def parse_package_meta(package_path, require=True):
|
|||
def get_cuda_stream(require=False):
|
||||
# TODO: Error and tell to install chainer if not found
|
||||
# Requires GPU
|
||||
try:
|
||||
from cupy.cuda.stream import Stream
|
||||
except ImportError:
|
||||
return None
|
||||
return Stream()
|
||||
return CudaStream() if CudaStream is not None else None
|
||||
|
||||
|
||||
def get_async(stream, numpy_array):
|
||||
if cupy is None:
|
||||
return numpy_array
|
||||
else:
|
||||
return cupy.array(numpy_array, stream=stream)
|
||||
|
||||
|
||||
def read_regex(path):
|
||||
|
|
Loading…
Reference in New Issue