2018-07-24 21:38:44 +00:00
|
|
|
import pytest
|
2020-05-19 14:20:03 +00:00
|
|
|
from spacy.pipeline.defaults import default_parser, default_tok2vec
|
2018-07-24 21:38:44 +00:00
|
|
|
from spacy.vocab import Vocab
|
|
|
|
from spacy.syntax.arc_eager import ArcEager
|
|
|
|
from spacy.syntax.nn_parser import Parser
|
|
|
|
from spacy.tokens.doc import Doc
|
|
|
|
from spacy.gold import GoldParse
|
2020-05-18 20:23:33 +00:00
|
|
|
from thinc.api import Model
|
2017-05-15 19:46:08 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def vocab():
|
|
|
|
return Vocab()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def arc_eager(vocab):
|
2018-11-27 00:09:36 +00:00
|
|
|
actions = ArcEager.get_actions(left_labels=["L"], right_labels=["R"])
|
2017-05-15 19:46:08 +00:00
|
|
|
return ArcEager(vocab.strings, actions)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def tok2vec():
|
2020-02-27 17:42:27 +00:00
|
|
|
tok2vec = default_tok2vec()
|
2020-01-29 16:06:46 +00:00
|
|
|
tok2vec.initialize()
|
|
|
|
return tok2vec
|
2017-05-15 19:46:08 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def parser(vocab, arc_eager):
|
2020-02-27 17:42:27 +00:00
|
|
|
return Parser(vocab, model=default_parser(), moves=arc_eager)
|
2017-05-15 19:46:08 +00:00
|
|
|
|
2018-11-27 00:09:36 +00:00
|
|
|
|
2017-05-15 19:46:08 +00:00
|
|
|
@pytest.fixture
|
2020-02-27 17:42:27 +00:00
|
|
|
def model(arc_eager, tok2vec, vocab):
|
|
|
|
model = default_parser()
|
2020-05-18 20:23:33 +00:00
|
|
|
model.attrs["resize_output"](model, arc_eager.n_moves)
|
2020-02-27 17:42:27 +00:00
|
|
|
model.initialize()
|
|
|
|
return model
|
2017-05-15 19:46:08 +00:00
|
|
|
|
2018-07-24 21:38:44 +00:00
|
|
|
|
2017-05-15 19:46:08 +00:00
|
|
|
@pytest.fixture
|
|
|
|
def doc(vocab):
|
2018-11-27 00:09:36 +00:00
|
|
|
return Doc(vocab, words=["a", "b", "c"])
|
2017-05-15 19:46:08 +00:00
|
|
|
|
2018-07-24 21:38:44 +00:00
|
|
|
|
2017-05-15 19:46:08 +00:00
|
|
|
@pytest.fixture
|
|
|
|
def gold(doc):
|
2018-11-27 00:09:36 +00:00
|
|
|
return GoldParse(doc, heads=[1, 1, 1], deps=["L", "ROOT", "R"])
|
2017-07-19 22:16:52 +00:00
|
|
|
|
|
|
|
|
2017-05-15 19:46:08 +00:00
|
|
|
def test_can_init_nn_parser(parser):
|
2020-05-18 20:23:33 +00:00
|
|
|
assert isinstance(parser.model, Model)
|
2017-05-15 19:46:08 +00:00
|
|
|
|
|
|
|
|
2020-02-27 17:42:27 +00:00
|
|
|
def test_build_model(parser, vocab):
|
|
|
|
parser.model = Parser(vocab, model=default_parser(), moves=parser.moves).model
|
2017-05-15 19:46:08 +00:00
|
|
|
assert parser.model is not None
|
|
|
|
|
|
|
|
|
2017-05-16 14:17:30 +00:00
|
|
|
def test_predict_doc(parser, tok2vec, model, doc):
|
2020-01-29 16:06:46 +00:00
|
|
|
doc.tensor = tok2vec.predict([doc])[0]
|
2017-05-15 19:46:08 +00:00
|
|
|
parser.model = model
|
2017-05-19 23:11:29 +00:00
|
|
|
parser(doc)
|
2017-05-15 19:46:08 +00:00
|
|
|
|
|
|
|
|
2017-09-21 12:59:48 +00:00
|
|
|
def test_update_doc(parser, model, doc, gold):
|
2017-05-15 19:46:08 +00:00
|
|
|
parser.model = model
|
2018-11-27 00:09:36 +00:00
|
|
|
|
2020-01-29 16:06:46 +00:00
|
|
|
def optimize(key, weights, gradient):
|
2017-05-15 19:46:08 +00:00
|
|
|
weights -= 0.001 * gradient
|
2020-01-29 16:06:46 +00:00
|
|
|
return weights, gradient
|
2018-11-27 00:09:36 +00:00
|
|
|
|
2019-11-11 16:35:27 +00:00
|
|
|
parser.update((doc, gold), sgd=optimize)
|
2017-07-20 13:03:10 +00:00
|
|
|
|
|
|
|
|
2018-05-15 20:17:29 +00:00
|
|
|
@pytest.mark.xfail
|
2017-09-21 12:59:48 +00:00
|
|
|
def test_predict_doc_beam(parser, model, doc):
|
2017-07-20 13:03:10 +00:00
|
|
|
parser.model = model
|
|
|
|
parser(doc, beam_width=32, beam_density=0.001)
|
2017-08-18 20:27:42 +00:00
|
|
|
|
|
|
|
|
2018-05-15 20:17:29 +00:00
|
|
|
@pytest.mark.xfail
|
2017-09-21 12:59:48 +00:00
|
|
|
def test_update_doc_beam(parser, model, doc, gold):
|
2017-08-18 20:27:42 +00:00
|
|
|
parser.model = model
|
2018-11-27 00:09:36 +00:00
|
|
|
|
2017-08-18 20:27:42 +00:00
|
|
|
def optimize(weights, gradient, key=None):
|
|
|
|
weights -= 0.001 * gradient
|
2018-11-27 00:09:36 +00:00
|
|
|
|
2019-11-11 16:35:27 +00:00
|
|
|
parser.update_beam((doc, gold), sgd=optimize)
|