spaCy/spacy/syntax/parser.pyx

511 lines
18 KiB
Cython
Raw Normal View History

2014-12-16 11:44:43 +00:00
"""
MALT-style dependency parser
"""
2017-04-15 11:05:15 +00:00
# coding: utf-8
# cython: infer_types=True
2014-12-16 11:44:43 +00:00
from __future__ import unicode_literals
2017-04-15 11:05:15 +00:00
from collections import Counter
import ujson
2014-12-16 11:44:43 +00:00
cimport cython
2016-02-05 11:20:42 +00:00
cimport cython.parallel
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
2015-06-02 16:38:41 +00:00
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
2017-04-15 11:05:15 +00:00
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
from thinc.extra.eg cimport Example
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
2016-02-01 02:08:42 +00:00
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
2017-03-10 17:21:21 +00:00
2014-12-16 11:44:43 +00:00
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from ._state cimport StateC
2017-04-15 11:05:15 +00:00
from .nonproj import PseudoProjectivity
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from ..gold cimport GoldParse
2014-12-16 11:44:43 +00:00
2017-04-16 16:02:42 +00:00
USE_FTRL = True
2015-04-19 08:31:31 +00:00
DEBUG = False
2014-12-16 11:44:43 +00:00
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
2014-12-17 10:09:29 +00:00
pf = _parse_features
2015-03-24 04:08:35 +00:00
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
elif name.startswith('embed'):
2015-06-27 02:18:47 +00:00
return (pf.words, pf.tags, pf.labels)
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
2014-12-16 11:44:43 +00:00
cdef class ParserModel(AveragedPerceptron):
2017-03-10 17:21:21 +00:00
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
const StateC* state) nogil:
fill_context(context, state)
nr_feat = self.extracter.set_features(features, context)
return nr_feat
def update(self, Example eg, itn=0):
2017-04-15 11:05:15 +00:00
"""
Does regression on negative cost. Sort of cute?
"""
2017-03-10 17:21:21 +00:00
self.time += 1
2017-03-26 14:26:30 +00:00
cdef int best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
cdef int guess = eg.guess
if guess == best or best == -1:
return 0.0
2017-03-26 14:26:30 +00:00
cdef FeatureC feat
cdef int clas
cdef weight_t gradient
2017-03-16 16:58:20 +00:00
if USE_FTRL:
for feat in eg.c.features[:eg.c.nr_feat]:
2017-03-26 14:26:30 +00:00
for clas in range(eg.c.nr_class):
if eg.c.is_valid[clas] and eg.c.scores[clas] >= eg.c.scores[best]:
gradient = eg.c.scores[clas] + eg.c.costs[clas]
self.update_weight_ftrl(feat.key, clas, feat.value * gradient)
2017-03-16 16:58:20 +00:00
else:
for feat in eg.c.features[:eg.c.nr_feat]:
self.update_weight(feat.key, guess, feat.value * eg.c.costs[guess])
self.update_weight(feat.key, best, -feat.value * eg.c.costs[guess])
return eg.c.costs[guess]
2017-03-10 17:21:21 +00:00
def update_from_histories(self, TransitionSystem moves, Doc doc, histories, weight_t min_grad=0.0):
2017-03-10 17:21:21 +00:00
cdef Pool mem = Pool()
features = <FeatureC*>mem.alloc(self.nr_feat, sizeof(FeatureC))
cdef StateClass stcls
2017-03-10 17:21:21 +00:00
cdef class_t clas
self.time += 1
cdef atom_t[CONTEXT_SIZE] atoms
histories = [(grad, hist) for grad, hist in histories if abs(grad) >= min_grad and hist]
if not histories:
return None
gradient = [Counter() for _ in range(max([max(h)+1 for _, h in histories]))]
for d_loss, history in histories:
stcls = StateClass.init(doc.c, doc.length)
moves.initialize_state(stcls.c)
for clas in history:
nr_feat = self.set_featuresC(atoms, features, stcls.c)
clas_grad = gradient[clas]
for feat in features[:nr_feat]:
clas_grad[feat.key] += d_loss * feat.value
moves.c[clas].do(stcls.c, moves.c[clas].label)
cdef feat_t key
cdef weight_t d_feat
for clas, clas_grad in enumerate(gradient):
for key, d_feat in clas_grad.items():
if d_feat != 0:
self.update_weight_ftrl(key, clas, d_feat)
cdef class Parser:
2017-04-15 11:05:15 +00:00
"""
Base class of the DependencyParser and EntityRecognizer.
"""
@classmethod
def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
2017-04-15 11:05:15 +00:00
"""
Load the statistical model from the supplied path.
2016-11-01 11:25:36 +00:00
Arguments:
path (Path):
The path to load from.
vocab (Vocab):
The vocabulary. Must be shared by the documents to be processed.
require (bool):
Whether to raise an error if the files are not found.
Returns (Parser):
The newly constructed object.
"""
with (path / 'config.json').open() as file_:
2017-04-15 11:05:15 +00:00
cfg = ujson.load(file_)
# TODO: remove this shim when we don't have to support older data
if 'labels' in cfg and 'actions' not in cfg:
cfg['actions'] = cfg.pop('labels')
# TODO: remove this shim when we don't have to support older data
for action_name, labels in dict(cfg['actions']).items():
# We need this to be sorted
if isinstance(labels, dict):
labels = list(sorted(labels.keys()))
cfg['actions'][action_name] = labels
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
if (path / 'model').exists():
self.model.load(str(path / 'model'))
elif require:
raise IOError(
"Required file %s/model not found when loading" % str(path))
return self
def __init__(self, Vocab vocab, TransitionSystem=None, ParserModel model=None, **cfg):
2017-04-15 11:05:15 +00:00
"""
Create a Parser.
2016-11-01 11:25:36 +00:00
Arguments:
vocab (Vocab):
The vocabulary object. Must be shared with documents to be processed.
model (thinc.linear.AveragedPerceptron):
The statistical model.
Returns (Parser):
The newly constructed object.
"""
if TransitionSystem is None:
TransitionSystem = self.TransitionSystem
self.vocab = vocab
actions = TransitionSystem.get_actions(**cfg)
self.moves = TransitionSystem(vocab.strings, actions)
# TODO: Remove this when we no longer need to support old-style models
if isinstance(cfg.get('features'), basestring):
cfg['features'] = get_templates(cfg['features'])
elif 'features' not in cfg:
cfg['features'] = self.feature_templates
self.model = ParserModel(cfg['features'])
self.model.l1_penalty = cfg.get('L1', 0.0)
self.model.learn_rate = cfg.get('learn_rate', 0.001)
2017-03-08 00:38:51 +00:00
self.cfg = cfg
2017-04-15 14:11:26 +00:00
# TODO: This is a pretty hacky fix to the problem of adding more
# labels. The issue is they come in out of order, if labels are
# added during training
for label in cfg.get('extra_labels', []):
self.add_label(label)
def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model), None, None)
def __call__(self, Doc tokens):
2017-04-15 11:05:15 +00:00
"""
Apply the entity recognizer, setting the annotations onto the Doc object.
2016-11-01 11:25:36 +00:00
Arguments:
doc (Doc): The document to be processed.
Returns:
None
"""
cdef int nr_feat = self.model.nr_feat
2016-01-30 19:27:07 +00:00
with nogil:
status = self.parseC(tokens.c, tokens.length, nr_feat)
2016-01-30 19:27:07 +00:00
# Check for KeyboardInterrupt etc. Untested
PyErr_CheckSignals()
if status != 0:
raise ParserStateError(tokens)
self.moves.finalize_doc(tokens)
2016-01-30 19:27:07 +00:00
def pipe(self, stream, int batch_size=1000, int n_threads=2):
2017-04-15 11:05:15 +00:00
"""
Process a stream of documents.
2016-11-01 11:25:36 +00:00
Arguments:
stream: The sequence of documents to process.
batch_size (int):
The number of documents to accumulate into a working set.
n_threads (int):
The number of threads with which to work on the buffer in parallel.
Yields (Doc): Documents, in order.
"""
cdef Pool mem = Pool()
cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
cdef Doc doc
cdef int i
cdef int nr_feat = self.model.nr_feat
cdef int status
queue = []
for doc in stream:
doc_ptr[len(queue)] = doc.c
lengths[len(queue)] = doc.length
2016-02-05 18:37:50 +00:00
queue.append(doc)
if len(queue) == batch_size:
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
if status != 0:
with gil:
raise ParserStateError(queue[i])
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
queue = []
batch_size = len(queue)
with nogil:
for i in cython.parallel.prange(batch_size, num_threads=n_threads):
status = self.parseC(doc_ptr[i], lengths[i], nr_feat)
if status != 0:
with gil:
raise ParserStateError(queue[i])
PyErr_CheckSignals()
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil:
state = new StateC(tokens, length)
# NB: This can change self.moves.n_moves!
2017-03-31 11:59:19 +00:00
# I think this causes memory errors if called by .pipe()
self.moves.initialize_state(state)
nr_class = self.moves.n_moves
cdef ExampleC eg
eg.nr_feat = nr_feat
eg.nr_atom = CONTEXT_SIZE
eg.nr_class = nr_class
eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
eg.is_valid = <int*>calloc(sizeof(int), nr_class)
cdef int i
while not state.is_final():
2017-03-10 17:21:21 +00:00
eg.nr_feat = self.model.set_featuresC(eg.atoms, eg.features, state)
self.moves.set_valid(eg.is_valid, state)
self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
if guess < 0:
return 1
action = self.moves.c[guess]
action.do(state, action.label)
memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class)
for i in range(eg.nr_class):
eg.is_valid[i] = 1
self.moves.finalize_state(state)
for i in range(length):
tokens[i] = state._sent[i]
del state
free(eg.features)
free(eg.atoms)
free(eg.scores)
free(eg.is_valid)
return 0
def update(self, Doc tokens, GoldParse gold, itn=0):
2017-04-15 11:05:15 +00:00
"""
Update the statistical model.
2016-11-01 11:25:36 +00:00
Arguments:
doc (Doc):
The example document for the update.
gold (GoldParse):
The gold-standard annotations, to calculate the loss.
Returns (float):
The loss on this example.
"""
self.moves.preprocess_gold(gold)
2015-11-03 13:15:14 +00:00
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
self.moves.initialize_state(stcls.c)
cdef Pool mem = Pool()
cdef Example eg = Example(
nr_class=self.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.model.nr_feat)
2015-06-30 12:26:32 +00:00
cdef weight_t loss = 0
cdef Transition action
while not stcls.is_final():
2017-03-10 17:21:21 +00:00
eg.c.nr_feat = self.model.set_featuresC(eg.c.atoms, eg.c.features,
stcls.c)
self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
self.model.update(eg)
2017-03-08 00:38:51 +00:00
action = self.moves.c[guess]
action.do(stcls.c, action.label)
2017-03-08 00:38:51 +00:00
loss += eg.costs[guess]
eg.fill_scores(0, eg.c.nr_class)
eg.fill_costs(0, eg.c.nr_class)
eg.fill_is_valid(1, eg.c.nr_class)
2017-03-16 16:58:20 +00:00
self.moves.finalize_state(stcls.c)
2015-06-30 12:26:32 +00:00
return loss
def step_through(self, Doc doc, GoldParse gold=None):
2017-04-15 11:05:15 +00:00
"""
Set up a stepwise state, to introspect and control the transition sequence.
2016-11-01 11:25:36 +00:00
Arguments:
doc (Doc): The document to step through.
gold (GoldParse): Optional gold parse
2016-11-01 11:25:36 +00:00
Returns (StepwiseState):
A state object, to step through the annotation process.
"""
return StepwiseState(self, doc, gold=gold)
def from_transition_sequence(self, Doc doc, sequence):
2016-11-01 11:25:36 +00:00
"""Control the annotations on a document by specifying a transition sequence
to follow.
Arguments:
doc (Doc): The document to annotate.
sequence: A sequence of action names, as unicode strings.
Returns: None
"""
with self.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_label(self, label):
# Doesn't set label into serializer -- subclasses override it to do that.
for action in self.moves.action_types:
2017-04-15 14:00:28 +00:00
added = self.moves.add_action(action, label)
if added:
# Important that the labels be stored as a list! We need the
# order, or the model goes out of synch
2017-04-15 14:00:28 +00:00
self.cfg.setdefault('extra_labels', []).append(label)
2017-03-08 00:38:51 +00:00
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly GoldParse gold
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
self.parser = parser
self.doc = doc
2017-04-15 11:35:01 +00:00
if gold is not None:
self.gold = gold
2017-04-15 14:00:28 +00:00
self.parser.moves.preprocess_gold(self.gold)
else:
self.gold = GoldParse(doc)
2015-11-03 13:15:14 +00:00
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls.c)
self.eg = Example(
nr_class=self.parser.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.parser.model.nr_feat)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
for i in range(self.stcls.c.length)]
@property
def costs(self):
2017-04-15 11:05:15 +00:00
"""
Find the action-costs for the current state.
"""
2017-04-15 11:35:01 +00:00
if not self.gold:
raise ValueError("Can't set costs: No GoldParse provided")
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
self.stcls, self.gold)
costs = {}
for i in range(self.parser.moves.n_moves):
if not self.eg.c.is_valid[i]:
continue
transition = self.parser.moves.c[i]
name = self.parser.moves.move_name(transition.move, transition.label)
costs[name] = self.eg.c.costs[i]
return costs
def predict(self):
self.eg.reset()
2017-03-10 17:21:21 +00:00
self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
self.stcls.c)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
self.parser.model.set_scoresC(self.eg.c.scores,
self.eg.c.features, self.eg.c.nr_feat)
cdef Transition action = self.parser.moves.c[self.eg.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name=None):
if action_name is None:
action_name = self.predict()
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
2015-08-10 03:58:43 +00:00
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls.c, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls.c)
self.doc.set_parse(self.stcls.c._sent)
self.parser.moves.finalize_doc(self.doc)
class ParserStateError(ValueError):
2016-10-12 12:35:55 +00:00
def __init__(self, doc):
2016-10-12 12:44:31 +00:00
ValueError.__init__(self,
"Error analysing doc -- no valid actions available. This should "
"never happen, so please report the error on the issue tracker. "
"Here's the thread to do so --- reopen it if it's closed:\n"
"https://github.com/spacy-io/spaCy/issues/429\n"
"Please include the text that the parser failed on, which is:\n"
"%s" % repr(doc.text))
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
cdef int best = -1
for i in range(n):
if costs[i] <= 0:
if best == -1 or scores[i] > scores[best]:
best = i
return best
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
2015-08-10 03:58:43 +00:00
mode = i
score = scores[i]
return mode