spaCy/examples/training/train_textcat.py

137 lines
5.2 KiB
Python
Raw Normal View History

2017-10-26 22:32:19 +00:00
#!/usr/bin/env python
# coding: utf8
"""Train a multi-label convolutional neural network text classifier on the
IMDB dataset, using the TextCategorizer component. The dataset will be loaded
automatically via Thinc's built-in dataset loader. The model is added to
2017-10-31 23:43:22 +00:00
spacy.pipeline, and predictions are available via `doc.cats`. For more details,
see the documentation:
2017-10-26 22:32:19 +00:00
* Training: https://alpha.spacy.io/usage/training
* Text classification: https://alpha.spacy.io/usage/text-classification
Developed for: spaCy 2.0.0a18
Last updated for: spaCy 2.0.0a18
"""
from __future__ import unicode_literals, print_function
import plac
import random
2017-10-26 22:32:19 +00:00
from pathlib import Path
import thinc.extra.datasets
2017-10-26 22:32:19 +00:00
import spacy
from spacy.gold import GoldParse, minibatch
from spacy.util import compounding
from spacy.pipeline import TextCategorizer
2017-10-04 13:12:28 +00:00
2017-10-26 22:32:19 +00:00
@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
def main(model=None, output_dir=None, n_iter=20):
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# add the text classifier to the pipeline if it doesn't exist
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'textcat' not in nlp.pipe_names:
# textcat = nlp.create_pipe('textcat')
textcat = TextCategorizer(nlp.vocab, labels=['POSITIVE'])
nlp.add_pipe(textcat, last=True)
2017-10-26 22:32:19 +00:00
# otherwise, get it, so we can add labels to it
else:
textcat = nlp.get_pipe('textcat')
# add label to text classifier
# textcat.add_label('POSITIVE')
# load the IMBD dataset
print("Loading IMDB data...")
(train_texts, train_cats), (dev_texts, dev_cats) = load_data(limit=2000)
train_docs = [nlp.tokenizer(text) for text in train_texts]
train_gold = [GoldParse(doc, cats=cats) for doc, cats in
zip(train_docs, train_cats)]
2017-10-04 13:12:28 +00:00
train_data = list(zip(train_docs, train_gold))
2017-10-26 22:32:19 +00:00
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
with nlp.disable_pipes(*other_pipes): # only train textcat
optimizer = nlp.begin_training()
2017-10-26 22:32:19 +00:00
print("Training the model...")
print('{:^5}\t{:^5}\t{:^5}\t{:^5}'.format('LOSS', 'P', 'R', 'F'))
for i in range(n_iter):
losses = {}
# batch up the examples using spaCy's minibatch
batches = minibatch(train_data, size=compounding(4., 128., 1.001))
for batch in batches:
docs, golds = zip(*batch)
nlp.update(docs, golds, sgd=optimizer, drop=0.2, losses=losses)
with textcat.model.use_params(optimizer.averages):
# evaluate on the dev data split off in load_data()
scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
print('{0:.3f}\t{0:.3f}\t{0:.3f}\t{0:.3f}' # print a simple table
.format(losses['textcat'], scores['textcat_p'],
scores['textcat_r'], scores['textcat_f']))
# test the trained model
test_text = "This movie sucked"
doc = nlp(test_text)
print(test_text, doc.cats)
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2(test_text)
print(test_text, doc2.cats)
def load_data(limit=0, split=0.8):
"""Load data from the IMDB dataset."""
# Partition off part of the train data for evaluation
train_data, _ = thinc.extra.datasets.imdb()
random.shuffle(train_data)
train_data = train_data[-limit:]
texts, labels = zip(*train_data)
cats = [{'POSITIVE': bool(y)} for y in labels]
split = int(len(train_data) * split)
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
def evaluate(tokenizer, textcat, texts, cats):
docs = (tokenizer(text) for text in texts)
2017-10-26 22:32:19 +00:00
tp = 1e-8 # True positives
fp = 1e-8 # False positives
fn = 1e-8 # False negatives
tn = 1e-8 # True negatives
for i, doc in enumerate(textcat.pipe(docs)):
gold = cats[i]
for label, score in doc.cats.items():
if label not in gold:
continue
if score >= 0.5 and gold[label] >= 0.5:
tp += 1.
elif score >= 0.5 and gold[label] < 0.5:
fp += 1.
elif score < 0.5 and gold[label] < 0.5:
tn += 1
elif score < 0.5 and gold[label] >= 0.5:
fn += 1
2017-10-26 22:32:19 +00:00
precision = tp / (tp + fp)
recall = tp / (tp + fn)
2017-10-26 22:32:19 +00:00
f_score = 2 * (precision * recall) / (precision + recall)
return {'textcat_p': precision, 'textcat_r': recall, 'textcat_f': f_score}
2017-07-22 22:34:12 +00:00
if __name__ == '__main__':
plac.call(main)