mirror of https://github.com/explosion/spaCy.git
102 lines
3.3 KiB
Python
102 lines
3.3 KiB
Python
|
from __future__ import unicode_literals
|
||
|
import plac
|
||
|
import random
|
||
|
import tqdm
|
||
|
|
||
|
from thinc.neural.optimizers import Adam
|
||
|
from thinc.neural.ops import NumpyOps
|
||
|
import thinc.extra.datasets
|
||
|
|
||
|
import spacy.lang.en
|
||
|
from spacy.gold import GoldParse, minibatch
|
||
|
from spacy.util import compounding
|
||
|
from spacy.pipeline import TextCategorizer
|
||
|
|
||
|
|
||
|
def train_textcat(tokenizer, textcat,
|
||
|
train_texts, train_cats, dev_texts, dev_cats,
|
||
|
n_iter=20):
|
||
|
'''
|
||
|
Train the TextCategorizer without associated pipeline.
|
||
|
'''
|
||
|
textcat.begin_training()
|
||
|
optimizer = Adam(NumpyOps(), 0.001)
|
||
|
train_docs = [tokenizer(text) for text in train_texts]
|
||
|
train_gold = [GoldParse(doc, cats=cats) for doc, cats in
|
||
|
zip(train_docs, train_cats)]
|
||
|
train_data = zip(train_docs, train_gold)
|
||
|
batch_sizes = compounding(4., 128., 1.001)
|
||
|
for i in range(n_iter):
|
||
|
losses = {}
|
||
|
for batch in minibatch(tqdm.tqdm(train_data, leave=False),
|
||
|
size=batch_sizes):
|
||
|
docs, golds = zip(*batch)
|
||
|
textcat.update((docs, None), golds, sgd=optimizer, drop=0.2,
|
||
|
losses=losses)
|
||
|
with textcat.model.use_params(optimizer.averages):
|
||
|
scores = evaluate(tokenizer, textcat, dev_texts, dev_cats)
|
||
|
yield losses['textcat'], scores
|
||
|
|
||
|
|
||
|
def evaluate(tokenizer, textcat, texts, cats):
|
||
|
docs = (tokenizer(text) for text in texts)
|
||
|
tp = 1e-8 # True positives
|
||
|
fp = 1e-8 # False positives
|
||
|
fn = 1e-8 # False negatives
|
||
|
tn = 1e-8 # True negatives
|
||
|
for i, doc in enumerate(textcat.pipe(docs)):
|
||
|
gold = cats[i]
|
||
|
for label, score in doc.cats.items():
|
||
|
if score >= 0.5 and label in gold:
|
||
|
tp += 1.
|
||
|
elif score >= 0.5 and label not in gold:
|
||
|
fp += 1.
|
||
|
elif score < 0.5 and label not in gold:
|
||
|
tn += 1
|
||
|
if score < 0.5 and label in gold:
|
||
|
fn += 1
|
||
|
precis = tp / (tp + fp)
|
||
|
recall = tp / (tp + fn)
|
||
|
fscore = 2 * (precis * recall) / (precis + recall)
|
||
|
return {'textcat_p': precis, 'textcat_r': recall, 'textcat_f': fscore}
|
||
|
|
||
|
|
||
|
def load_data():
|
||
|
# Partition off part of the train data --- avoid running experiments
|
||
|
# against test.
|
||
|
train_data, _ = thinc.extra.datasets.imdb()
|
||
|
|
||
|
random.shuffle(train_data)
|
||
|
|
||
|
texts, labels = zip(*train_data)
|
||
|
cats = [(['POSITIVE'] if y else []) for y in labels]
|
||
|
|
||
|
split = int(len(train_data) * 0.8)
|
||
|
|
||
|
train_texts = texts[:split]
|
||
|
train_cats = cats[:split]
|
||
|
dev_texts = texts[split:]
|
||
|
dev_cats = cats[split:]
|
||
|
return (train_texts, train_cats), (dev_texts, dev_cats)
|
||
|
|
||
|
|
||
|
def main():
|
||
|
nlp = spacy.lang.en.English()
|
||
|
tokenizer = nlp.tokenizer
|
||
|
textcat = TextCategorizer(tokenizer.vocab, labels=['POSITIVE'])
|
||
|
|
||
|
print("Load IMDB data")
|
||
|
(train_texts, train_cats), (dev_texts, dev_cats) = load_data()
|
||
|
|
||
|
print("Itn.\tLoss\tP\tR\tF")
|
||
|
progress = '{i:d} {loss:.3f} {textcat_p:.3f} {textcat_r:.3f} {textcat_f:.3f}'
|
||
|
|
||
|
for i, (loss, scores) in enumerate(train_textcat(tokenizer, textcat,
|
||
|
train_texts, train_cats,
|
||
|
dev_texts, dev_cats, n_iter=20)):
|
||
|
print(progress.format(i=i, loss=loss, **scores))
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
plac.call(main)
|