mirror of https://github.com/explosion/spaCy.git
114 lines
3.5 KiB
Python
114 lines
3.5 KiB
Python
|
from random import shuffle
|
||
|
|
||
|
from examples.pipeline.wiki_entity_linking import kb_creator
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from spacy._ml import zero_init, create_default_optimizer
|
||
|
from spacy.cli.pretrain import get_cossim_loss
|
||
|
|
||
|
from thinc.v2v import Model
|
||
|
from thinc.api import chain
|
||
|
from thinc.neural._classes.affine import Affine
|
||
|
|
||
|
|
||
|
class EntityEncoder:
|
||
|
|
||
|
INPUT_DIM = 300 # dimension of pre-trained vectors
|
||
|
DESC_WIDTH = 64
|
||
|
|
||
|
DROP = 0
|
||
|
EPOCHS = 5
|
||
|
STOP_THRESHOLD = 0.05
|
||
|
|
||
|
BATCH_SIZE = 1000
|
||
|
|
||
|
def __init__(self, kb, nlp):
|
||
|
self.nlp = nlp
|
||
|
self.kb = kb
|
||
|
|
||
|
def run(self, entity_descr_output):
|
||
|
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
|
||
|
|
||
|
processed, loss = self._train_model(entity_descr_output, id_to_descr)
|
||
|
print("Trained on", processed, "entities across", self.EPOCHS, "epochs")
|
||
|
print("Final loss:", loss)
|
||
|
print()
|
||
|
|
||
|
# TODO: apply and write to file afterwards !
|
||
|
# self._apply_encoder(id_to_descr)
|
||
|
|
||
|
def _train_model(self, entity_descr_output, id_to_descr):
|
||
|
# TODO: when loss gets too low, a 'mean of empty slice' warning is thrown by numpy
|
||
|
|
||
|
self._build_network(self.INPUT_DIM, self.DESC_WIDTH)
|
||
|
|
||
|
processed = 0
|
||
|
loss = 1
|
||
|
|
||
|
for i in range(self.EPOCHS):
|
||
|
entity_keys = list(id_to_descr.keys())
|
||
|
shuffle(entity_keys)
|
||
|
|
||
|
batch_nr = 0
|
||
|
start = 0
|
||
|
stop = min(self.BATCH_SIZE, len(entity_keys))
|
||
|
|
||
|
while loss > self.STOP_THRESHOLD and start < len(entity_keys):
|
||
|
batch = []
|
||
|
for e in entity_keys[start:stop]:
|
||
|
descr = id_to_descr[e]
|
||
|
doc = self.nlp(descr)
|
||
|
doc_vector = self._get_doc_embedding(doc)
|
||
|
batch.append(doc_vector)
|
||
|
|
||
|
loss = self.update(batch)
|
||
|
print(i, batch_nr, loss)
|
||
|
processed += len(batch)
|
||
|
|
||
|
batch_nr += 1
|
||
|
start = start + self.BATCH_SIZE
|
||
|
stop = min(stop + self.BATCH_SIZE, len(entity_keys))
|
||
|
|
||
|
return processed, loss
|
||
|
|
||
|
def _apply_encoder(self, id_to_descr):
|
||
|
for id, descr in id_to_descr.items():
|
||
|
doc = self.nlp(descr)
|
||
|
doc_vector = self._get_doc_embedding(doc)
|
||
|
encoding = self.encoder(np.asarray([doc_vector]))
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_doc_embedding(doc):
|
||
|
indices = np.zeros((len(doc),), dtype="i")
|
||
|
for i, word in enumerate(doc):
|
||
|
if word.orth in doc.vocab.vectors.key2row:
|
||
|
indices[i] = doc.vocab.vectors.key2row[word.orth]
|
||
|
else:
|
||
|
indices[i] = 0
|
||
|
word_vectors = doc.vocab.vectors.data[indices]
|
||
|
doc_vector = np.mean(word_vectors, axis=0) # TODO: min? max?
|
||
|
return doc_vector
|
||
|
|
||
|
def _build_network(self, orig_width, hidden_with):
|
||
|
with Model.define_operators({">>": chain}):
|
||
|
self.encoder = (
|
||
|
Affine(hidden_with, orig_width)
|
||
|
)
|
||
|
self.model = self.encoder >> zero_init(Affine(orig_width, hidden_with, drop_factor=0.0))
|
||
|
|
||
|
self.sgd = create_default_optimizer(self.model.ops)
|
||
|
|
||
|
def update(self, vectors):
|
||
|
predictions, bp_model = self.model.begin_update(np.asarray(vectors), drop=self.DROP)
|
||
|
|
||
|
loss, d_scores = self.get_loss(scores=predictions, golds=np.asarray(vectors))
|
||
|
bp_model(d_scores, sgd=self.sgd)
|
||
|
|
||
|
return loss / len(vectors)
|
||
|
|
||
|
@staticmethod
|
||
|
def get_loss(golds, scores):
|
||
|
loss, gradients = get_cossim_loss(scores, golds)
|
||
|
return loss, gradients
|